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Why is it so crucial to understand SOL dynamics? 	

How can we simulate the SOL? How did we get there? 	
What are the mechanisms setting the SOL width? ES potential? 	

Toroidal rotation? How can the heat load to the vessel be reduced?	
Our current activities? 	
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the most external plasma region in a tokamak 	
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Pwall ⇠
Qsep

Awet
(1� frad) ⇠

Qsep

g(2⇡R)LSOL
(1� frad)  10 MW/m2

Heat exhaust – a crucial issue for 
the entire fusion program  	
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Properties of SOL turbulence 	
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Fairly cold (< 100 eV, ne~1019 m-3) 
magnetized plasma	
	

Role of neutrals	
	

Sheath physics	
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A model to evolve plasma turbulence in the SOL 	

ρi<<L, ω<<Ωci	Braginskii 
model	

Drift-reduced 
Braginskii equations	

Collisional	
Plasma	

Te, Ti ,Ω (vorticity)        similar equations	

V||e, V||i             parallel momentum balance	

PARALLEL	
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A model to evolve plasma turbulence in the SOL 	

To solve in 3D geometry, taking into account plasma 
outflow from the core, turbulent transport, ionization and 

charge exchange processes, and losses at the vessel  	

+ coupling with neutrals	
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Wersal & Ricci, NF 2015	
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•  Set of b.c. for all 
quantities, generalizing 
Bohm-Chodura	

•  Checked agreement 
with PIC kinetic 
simulations	

•  Neutrals: reflection and 
re-emission with 
cosine distribution 	

	

BOUNDARY CONDITIONS	

VELOCITY	

MAGNETIC PRE-SHEATH	

DEBYE SHEATH	

Loizu et al., PoP 2012	



GBS: our simulation tool	

LAPD, UCLA	

HelCat, UNM	
Helimak, UTexas	

ITER-like	
SOL	

Motivation
The plasma-wall transition
GBS turbulence simulations
Sheath e�ects on turbulence

Conclusions

The GBS code
Examples of 3D simulations

The GBS code, a tool to simulate open field line turbulence

� Developed by steps of increasing complexity

� Drift-reduced Braginskii equations

� Global, 3D, Flux-driven, Full-n [Ricci et al PPCF 2012]

J. Loizu et al. 13 / 24 The role of the sheath in magnetized plasma fluid turbulence

TORPEX, SPC	

Stellarator	
SOL	

Limited	
SOL	

Ricci et al., PPCF 2012; Halpern et al., JCP 2016	



Code verification, the techniques	

1)  Simple tests	

2)  Code-to-code comparisons (benchmarking)	

3)  Discretization error quantification	

4)  Convergence tests	

5)  Order-of-accuracy tests	

NOT 
RIGOROUS	

RIGOROUS, 	
requires	
analytical 
solution	

Only verification ensuring 
convergence and correct 
numerical implementation	

Riva et al., PoP 2014; Ricci et al., PoP 2015 	



Order-of-accuracy tests, method of manufactured solution	

Our model:                  ,        unknown	
	

We solve                      ,   but	

A(f) = 0 f

An(fn) = 0 ?

100 101
10−10

10−5

h = ∆x/∆x0 = ∆y/∆y0 = (∆t/∆t0)2

||ϵ
|| ∞

n
T
v∥,i
v∥,e
ω
Φ

For GBS:	 � ⇠ h2

�n = fn � f =

1) we choose    ,  then  	g

2) we solve: 	An(gn)� S = 0

Method of manufactured solution: 	

S = A(g)
�n = gn � g
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GBS simulation of a linear 
device: LAPD and HelCat	

Parallel 
dynamics	Magnetic curvature	 Source	ExB	
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Plasma gradients	

Source	

Straight B 
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GBS simulation of a linear 
device: LAPD and HelCat	

Plasma gradients	
Drift waves	

 	

Kelvin-Helmholtz	
	

Sheath mode	
Rogers & Ricci, PRL 2010	
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The Simple Magnetized Plasma (SMT) TORPEX	
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The Simple Magnetized Plasma (SMT) TORPEX	



TORPEX key elements	

Parallel dynamics	
and losses	

Magnetic 
curvature	

Source (EC and UH resonances)	

Plasma 
gradients	

Simple magnetic curvature	

⇥n

⇥t
+ [�, n] =

2

R

⇥(nTe)

⇥y
� 2n

R

⇥�

⇥y
�rk(nVke) + S

N: number of field line turns	
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For N~1-6,            turbulence	

!
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N=2!

�

kk = 0

�v =
Lv

N



 At  high N>7,             turbulence	
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stabilization, requires high N and    	kk ⌘k 6= 0

Toroidally symmetric  	
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TORPEX turbulent regimes!

Lv

�v

N

kk 6= 0

Ideal interchange regime	

kk = 0 (�v = Lv/N)

Resistive interchange 
regime	

(�v = Lv)

Linear theory, nonlinear simulations, experiments in agreement	

Ricci et al., PRL 2008; 	
Ricci & Rogers, PRL 2010	
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TORPEX, SPC	

Stellarator	
SOL	

Limited	
SOL	

Focus on long mean 
free path for neutrals  	



Tokamak SOL simulations	

Losses 
at the 
limiter	

Radial 
transport	

Flow	
 along B	

Plasma 
outflowing from 

the core	



Tokamak SOL simulations	

- 107 grid points	
- 106 time steps	
- 104 CPUs	
        105 CPU hours	
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Simulations contain physics of ballooning modes, drift waves, 	
Kelvin-Helmholtz, blobs, parallel flows, sheath losses… 	



ISTTOK	

C-Mod	

A large validation effort	

TCV	

a/�s



Gas puff imaging 
diagnostics	p̃/p

D̃↵/D↵

Synthetic 
diagnostic	

Emission	

Photodiode	

Geometry	



C-Mod fluctuation properties well captured	

Alcator C-Mod, 	
B= 2.7 and 3.8 T, q=2.7,

…	
 	

Introduction
Global model for SOL turbulence

SOL turbulent dynamics
C-Mod Comparison

Conclusions

Turbulence levels
Dominant instabilities
Scrape-o� layer width scaling

GBS agrees with [Zweben PoP 2009] within error bars

� Compare GBS radial/poloidal
average against GPI data

� Shot-to-shot variation indicated
with error bars

� GBS gives good match for
�D�/D� and higher moments

� Previous gyrofluid simulations
gave �D�/D� � 5–10%
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Introduction
Global model for SOL turbulence

SOL turbulent dynamics
C-Mod Comparison

Conclusions

Turbulence levels
Dominant instabilities
Scrape-o� layer width scaling

Typical spatial, temporal turbulent scales give reasonable
agreement

� Compute ⇥auto , Lrad , Lpol using
2 point correlations functions Cij

Cii (⇥auto) =
1

2

L = 1.66
�x�

� lnCij(t = 0)

� Good match for L ⇥ 1.5cm,
⇥auto underpredicted by ⇥2
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Halpern et al., PPCF 2015	



The key questions we addressed in the past	

•  How is the SOL width established? 	
	
	
•  How to minimize heat load on the vessel walls? 	

•  What determines the SOL electrostatic potential?	

•  Are there mechanisms to generate toroidal rotation in the SOL?	
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Three possible turbulence saturation mechanisms	

Removal of the turbulence 
drive (gradient removal):	

Kelvin – Helmholtz secondary 
instability:	

Suppression due to strong 
shear flow:	
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SOL width – analytical estimate  	
✓

Removal of driving gradient	
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SOL turbulent regimes	

RESISTIVE BALLOONING 
MODE, with EM EFFECTS	

INERTIAL DRIFT WAVES	

RESISTIVE 
DRIFT WAVES	

Instability driving turbulence depends mainly on q,   ,   .	ŝ⌫

TYPICAL LIMITED 
SOL OPERATIONAL	

PARAMETERS	

Mosetto et al., PoP 2013; PoP 2015	
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Ballooning scaling, good agreement with experiments	

In SI units:	

Lp ' 7.22⇥ 10�8q8/7R5/7B�4/7
� T�2/7

e,LCFSn
2/7
e,LCFS

✓
1 +

Ti,LCFS

Te,LCFS

◆1/7

Halpern et al., NF 2013; NF 2014	
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SOL width – comparison with ITPA database	

Halpern et al, PPCF 2016 	
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A theoretical interpretation of the main SOL heat flux width scaling
for inner wall limited tokamak plasmas

Federico D. Halpern1, Jan Horacek2, Richard A. Pitts3, Paolo Ricci1
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Introduction
I The ramp-up phase of ITER plasmas are expected

to be mostly inner-wall limited (IWL)
I Can we predict the main scrape-off layer (SOL) heat

flux width �
q

= �qk/rqk (qk ⇠ nc

s

T ) in IWL
plasmas?

I Model the variation of �
q

with respect to the local
SOL dimensionless parameters using turbulent
transport theory

I Base the analysis on extensive ITPA SOL/divertor
physics SOL width database [Horacek et al. PPCF
(2015)], containing ⇠ 500 �

q

measurements from
many machines

I Our aim is two-fold: (1) predict the IWL main SOL
width (2) seek physics based understanding

Model and dimensionless parameters

I Drift-reduced Braginskii eqns with orderings k? � kk, d/dt ⌧ !
ci

[Zeiler et al., PoP 1997]:

I Low-frequency, collisional, electrostatic turbulence driven by plasma gradients
I Cold ion model ! due to overall weak T

i

effects, lack of T

i

data in database

System contains inertial/resistive drift waves/ballooning modes
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I Normalized units used throughout: B ⇠ B�, Lk ⇠ R (defined at magnetic axis), T ⇠ T

e0, n ⇠ n0,
L? ⇠ ⇢

s

(defined at LCFS), t ⇠ R/c

s

Three dimensionless parameters emerge naturally from normalization and linearization:
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!
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�kR
, Spitzer resistivity affects linear stability

I
q ⇡ a

R

B0
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⇠ r�1
k from field line bending term ! parallel damping term
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Simple SOL width model including turbulence

I Extensive SOL NL simulation campaign scan revealed turbulent saturation mechanism, non-linear
instability regimes, effects of parallel dynamics... [NF/PoP/PPCF (2012-15)]

I Consider simplest possible transport equation r? · �pvE⇥B
� ⇠ rk · (pc

s

)

I SOL width arises from balance between turbulent (mesoscale k

r

⇠pk✓/L

p

) flux, ⇠ �p/(k✓Lp

)
and sheath losses ⇠ pc

s

/q95

I Power balance yields "simple SOL" width valid for small rkT

L

q,gr

/ L

p,gr

=
q95
c

s
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�
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◆

max

Details, caveats, simplifications

I Main SOL �
q

from single exponential fit ! ignore narrow feature [Kocan et al., NF (2015)]

I Parameters ⇢?, ⌫, q95 available in 317 database entries, dominated by TS data

I Neutrals not taken into account, but �
MFP,n/�q

� 1 ! ionization takes place in confined region

I Impurities can drive poloidal gradients esp. in machines with C walls
I However �

q

poloidally uniform in C-Mod (but high-Z wall) [LaBombard, private comm.]

I Poloidal angle of measurement not important factor in [Horacek et al., PPCF (2015)]

I Theory predicts L

p

instead of �
q

! however, L

p

is a good proxy for �
q

in COMPASS
I Introduce L

q

= �
q

/⇢
s

/ L

p

, O(1) constant found from fit

I Shaping effects not included ! indirectly evaluate importance of 

Database modeling results

1) NL saturated resistive ballooning mode (RBM) turbulence
I RBMs suggested by NL/QL simulations [Mosetto, PoP (2013)]

I Verified with NL GBS simulations [Halpern, NF (2014)]

I Find analytical estimate for � and k✓ [Halpern, NF (2013)]
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R2=0.14

R2(κ<1.2)=0.24

RBM hypothesis probably too restrictive because ⌫ lower than
expected in ITPA database

2) Include other possible modes (RB/DW resistive/ballooning),
still assuming same saturation mechanism
I Write Newton search code to solve transport equation

L
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I Code reproduces L

p

in non-linear GBS simulations very well,
R

2 = 0.95 [Halpern, NF (2014)]

I Use DB entries as parameter space samples, fit ! power law

I Shaped discharges not well described by model (no  effects)
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R2=0.36

R2(κ<1.2)=0.60

Turn on/off different terms in linear model to identify dominant
instability ! inertial/resistive DW/BM are all important!

3) Direct non-linear robust fitting of database data
I Model equation with ⇢?, ⌫, q95 as fitting parameters

L

q,fit

= a ⇥ ⇢b

? ⇥ ⌫c ⇥ q

d

95

I "Robust" fitting algorithm down-weights outliers automatically,
yields "maximum likelihood solution", 95% confidence intervals
on model parameters

I Some physical parameters (local T , n) not taken into account in
[Horacek, PPCF (2015)] due to large uncertainty. However,
almost negligible effect in the end!
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R2=0.38

R2(κ<1.2)=0.63

Essentially same result as QL code. Direct non-linear fitting
cannot not improve upon theory model results!

Conclusions
I Model based on non-linearly saturated turbulence reproduces �

q

values in ITPA main-SOL �
q

database with same accuracy as non-linear regression based on engineering parameters
I Agreement is good for circular discharges, poor for shaped discharges
I Main result are new scalings for �

q

based on QL calculations and non-linear regression, here
expressed in physical units [m�3, eV,m,T]:

�
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= 1.93 ⇥ 10�4
n
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Outlook

I Can we obtain further relation to engineering parameters? �
q

⇠ B�(Ip/a

2)�0.75

I Evaluate effects of elongation, triangularity, starting from NL simulations
I Intricate combination of effects: linear/non-linear dynamics, field line length, flux surface area

I Understand SOL flux-driven turbulence in presence of X-point
I Continue validation efforts against C-Mod MLP / GPI
I Unravel near-SOL narrow heat flux feature:

flow/turbulence interaction in near SOL region (VI2.04, Thursday 4:30pm)
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•  Is a LFS or HFS limited plasma preferable 
(Lp larger)?	
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Trends explained by ballooning transport and ExB flow	
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•  How is the SOL width established? 	
	
	
•  How to minimize heat load on the vessel walls? 	

•  What determines the SOL electrostatic potential?	

•  Are there mechanisms to generate toroidal rotation in the SOL?	
	

The key questions addressed in the past	



Potential in the SOL set by sheath and electron adiabaticity 	On the electrostatic potential in the scrape-o↵-layer of magnetic confinement devices13

Figure 3. Equilibrium profile of the electrostatic potential �̄ in a poloidal cross-section
as given from GBS simulations (top row), from Eq. (11) (middle row), and from the
widely used estimate �̄ = �T0 (bottom row) with T0 = (T+

e +T�e )/2. Here � = 3 (left
column), � = 6 (middle column), and � = 10 (right column).

	
     Typical estimate: at the sheath	

     to have ambipolar flows,	
	
	
	
	
	
	
	
    Our more rigorous treatment, from       equation	

vki = cs vke = cs exp(�� e�/T sh
e )

� = �T sh
e /e ' 3T sh

e /e

vki = vke

� = �T sh
e /e+ 2.71(Te � T sh

e )/e

Sheath	 Adiabaticity	 ⇤T sh
e /e

h�it

�theory

✓

Loizu et al., PPCF 2013	
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� There is a finite volume-averaged toroidal rotation (� 0.3cs)
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2D equation for the equilibrium flow	

with boundary conditions: 	

Bohm’s	
criterion	
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correction	

Turbulent driven radial 
transport, 	
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Our model well describes simulation results…	
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F.D. Halpern et al. 34 / 36 Global EM simulations of tokamak SOL turbulence
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… and experimental trends	

	
•    	
	

•  Typically co-current	
	

•  Can become counter-current 
by reversing B or divertor 
position	

•  Agreement with C-Mod 
observations 	

Mk . 1

Sheath 
contribution, 	
co-current 	

Pressure poloidal asymmetry 
at divertor plates, 	

due to ballooning transport,  
direction: depends	

Analytical solution, far from limiter:	

Core 
coupling	
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Loizu et al., PoP 2014	

Taking typical SOL parameters, e.g., K¼ 3, a¼ 0.03 ’ 28
and qs/LT¼ 10"2,21 we get Msh ’ 0.5.

It has been observed, nevertheless, that the magnitude
and direction of toroidal rotation are not always exactly the
same when reversing the magnetic field: rotation can become
stronger or weaker in the co-current direction,23,26 and under
certain conditions it can even become counter-current.27 We
now show that this can be explained by the term Ma # rudn
in Eq. (30), which represents the effect of a pressure poloidal
asymmetry. Far from the two divertor legs, y/Ly $ 1, Ma

gives a co-current contribution if rudn > 0 and a counter-
current contribution if rudn < 0. The effect of this term is
illustrated in Fig. 10 where the function M(x, 0) is shown for
different values of rudn, and for two different values of Ms,
showing that the choice of the latter does not affect the
trends explored here. This effect explains the differences in
the net toroidal flow observed between SOL simulations
with different limiter positions. As Table II shows, in fact,
the net co-current toroidal flow is stronger when dn> 0 and
weaker when dn< 0 (ru ¼ 1 in all cases). The mechanism
responsible for the sign of dn is, as a matter of fact, the bal-
looning character of turbulent transport, which leads to a
larger plasma pressure around the low field side, as sketched
in Fig. 11. Thus, the sign of dn depends on the relative posi-
tion of the limiter or divertor with respect to the poloidal
location of the pressure peak.

In a tokamak, if the plasma is diverted with a single
null, one expects dn< 0 for a lower X-point and dn> 0 for
an upper X-point (see Fig. 11), two configurations that have
been explored in Alcator C-Mod.27 As summarized in Fig.
12, in this tokamak it was concluded that favourable co-
current situations in the SOL of L-mode plasmas are those
with normal B, lower single null (ru < 0, dn< 0) and
reversed B, upper single null (ru > 0, dn> 0). Similarly,
favourable counter-current situations are those with normal
B, upper single null (ru < 0, dn> 0) and reversed B, lower
single null (ru > 0, dn< 0). Therefore these observations
are all consistent with the contribution of the term
Ma # rudn. Similarly, this model may be used to explain the
trends observed in the SOL of other tokamaks, e.g., the TCV
tokamak26 or the Tore Supra tokamak.51

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a first-principle
based analytical theory to describe the generation and

transport of toroidal plasma rotation in the SOL. As
expected, the sources of intrinsic toroidal rotation reside
at the boundary. The presence of the sheath, equilibrium
poloidal E%B flows and pressure poloidal asymmetries
can explain the local generation of toroidal rotation, which
is radially transported by turbulence. The sheath physics nat-
urally leads to a co-current toroidal rotation, while the effect
of the poloidal pressure asymmetry (also regulated by the
plasma-sheath interaction) can explain the flow reversals
observed in tokamaks. Such flow reversals may occur when
either the magnetic field or the limiter/divertor position are
reversed, and this is explained by the ballooning character of
the turbulence. Our theoretical predictions agree rather well
with three-dimensional simulations of SOL turbulence.

The main limitation of our model is that ionization and
recombination processes, which may affect the poloidal pro-
file of !V jji, are not taken into account. This may restrict the
validity of the presented results to low-recycling regimes.
Also, the theory derived herein ceases to be valid in regimes
where turbulence is significantly suppressed and Pfirsch-
Schl€uter ion flows may play an important role, in particular in
modulating the poloidal profile of the parallel ion velocity.
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APPENDIX A: GBS EQUATIONS

The drift-reduced Braginskii equations36 implemented
in the GBS code describe the time-evolution of the plasma
density, n, the vorticity, x, the electrostatic potential, /, the
ion and electron parallel velocities, Vki and Vke, and the elec-
tron temperature Te.

With the definition of the Poisson bracket {f, g} and the
curvature operator C(f),

FIG. 12. Cartoon drawings of X-point
topologies, field directions, and poloi-
dal projections of the parallel flows
measured in the high field side SOL.
Reprinted with permission from.23
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Recent measurements: 2 scale lengths	

Nespoli et al., JNM 2015	
Kocan et al., NF 2015	
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Simulations of SOL and closed flux surface 	

Strong pressure gradient 
at the LCFS…	

… associated with 
strong shear flow 	

n/n0

�/(⇤Te0)

Halpern & Ricci, PRL (sub.)	
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GBS simulations with neutrals	

ne nn nn hv�izi

First steps towards simulation of detachment	

Kinetic neutral equation, solved with method of characteristics 	
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Going beyond Braginskii	
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GBS: our simulation tool	

LAPD, UCLA	

HelCat, UNM	
Helimak, UTexas	

ITER-like	
SOL	

Motivation
The plasma-wall transition
GBS turbulence simulations
Sheath e�ects on turbulence

Conclusions

The GBS code
Examples of 3D simulations

The GBS code, a tool to simulate open field line turbulence

� Developed by steps of increasing complexity

� Drift-reduced Braginskii equations

� Global, 3D, Flux-driven, Full-n [Ricci et al PPCF 2012]

J. Loizu et al. 13 / 24 The role of the sheath in magnetized plasma fluid turbulence

TORPEX, SPC	

Stellarator	
SOL	

Limited	
SOL	



GBS simulations of diverted geometry	

Use of 	
a new high-order 
non field-aligned 

algorithm 



What are we learning on SOL dynamics?	
•  The use first-principles simulations and analysis to 

investigate SOL plasma dynamics	

•  Progressive approach to complexity 	

•  Past results in limited configuration:	
–  SOL width set by resistive ballooning-driven turbulence 

saturated by the gradient removal mechanism	
–  Good agreement of pressure scale length with multi-machine 

measurements	
–  Mechanisms setting electrostatic potential and toroidal rotation 	

•  Current activities: turbulence across LCFS, neutral 
physics, more accurate plasma model, and divertor 	

http://people.epfl.ch/paolo.ricci 	
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Neutrals and GBS
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The complete set of equations	



ITER design based on scaling law"
!

Simulations of SOL turbulence are crucial	

ITER	
JET	

TCV	

SOL basic physics understanding is still missing 	



The full set of GBS equations	

Introduction
Global model for SOL turbulence

What have we learnt so far ?
Conclusions

Drift-reduced Braginskii equations to describe the SOL
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Need boundary conditions for: 	

	n, vke, vki, Te,r2
?�,⇥,�
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Turbulence saturation due to 
Kelvin-Helmholtz instability (KH)	

Primary instability grows 
until it causes KH 

unstable shear flow	

We expect KH to limit the transport,	
provided that KH is unstable!	

KH vs GR mechanism:	
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Is KH really setting transport? 	

q = 16
KH off	 KH 

saturates 
turbulence 	

q = 4
KH off	 KH plays a 

minor role: 
GR! 	

��

� �



Why is KH stable at low q but not higher q? 	

Only 
elongated 

eddies 
are KH 
unstable	

By comparing eddy turn over time and KH growth rate,  	
                                        KH unstable if:                          	
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KH vs GR scaling?	

Introduction
Global model for SOL turbulence

What have we learnt so far ?
Conclusions

Saturation mechanism
Dominant instabilities
Electromagnetic e�ects
Scrape-o� layer width scaling
Intrinsic rotation

Good agreement between theory and simulations
Lp predicted using self-consistent procedure
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GBS simulations : R = 500–2000, q = 3–6, ⇥ = 0.01–1, � = 0–3� 10�3
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Details of the source	



Tokamak SOL simulations	

Losses 
at the 
limiter	

Radial 
transport	

Flow	
 along B	

Plasma 
outflowing from 

the core	



Tokamak SOL simulations	



Tokamak SOL simulations	
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Tokamak SOL simulations	
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The TORPEX device	



The TORPEX device	



The TORPEX device	



The TORPEX device	



Key elements of the TORPEX device	

Parallel 
losses	

Magnetic 
curvature	

Source (EC and UH 
resonance)	

Plasma 
gradients	



Verification & Validation	

REALITY	

EXPERIMENT	

MODEL	SIMULATION 
CODE	

MEASUREMENT 

ANALYSIS 

DISCRETIZATION 
 & CODING 

COMPUTATION 

VERIFICATION 

VALIDATION 



  3D GBS model	

2D reduced model	

TORPEX	

Our project, paradigm of 
turbulence code validation	

?	
What is the agreement of experiment and simulations as a 
function of N (number of field line turns)? Is 3D necessary? 	

What can we learn on TORPEX physics from the validation?	



The validation methodology	
[Based on ideas of Terry et al., PoP 2008; Greenwald, PoP 2010]	
	
	

What quantities can we use for validation? The more, the better…	
-  Definition & evaluation of the validation observables	

What are the uncertainties affecting measured and simulation data?	
-  Uncertainty analysis	

For one observable, within its uncertainties, what is the level of agreement?	
-  Level of agreement for an individual observable	

How directly can an observable be extracted from simulation and experimental 
data? How worthy is it, i.e. what should be its weight in a composite metric?	

-  The observable hierarchy	

How to evaluate the global agreement and how to interpret it	

- Composite metric, χ	
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Limited SOL transport increases with     and  	

Introduction
Global model for SOL turbulence

What have we learnt so far ?
Conclusions

Saturation mechanism
Dominant instabilities
Electromagnetic e�ects
Scrape-o� layer width scaling
Intrinsic rotation

Electromagnetic phase space
� Build dimensionless phase space with full linear system...
� Verify turbulent saturation theory with GBS simulations

I R = 500, �e = 0 to 3� 10�3, ⇥ = 0.01, 0.1, 1, q = 3, 4, 6
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Global model for SOL turbulence

What have we learnt so far ?
Conclusions

Saturation mechanism
Dominant instabilities
Electromagnetic e�ects
Scrape-o� layer width scaling
Intrinsic rotation

SOL turbulence : interplay between �, ⌫, and !�

[LaBombard et al., Nucl Fusion (2005), lower-null L-mode discharges]

Important to understand resistive ⇥ ideal ballooning mode transition
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Maybe related to 
the density limit?	
	
Coupling with core 
physics needs be 
addressed…	
  	

↵
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LaBombard, NF 2005	
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Limited SOL width widens with   

CASTOR	

TCV	
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