Intrinsic edge rotation as governed by momentum transport due to neutrals

Istvan Pusztai, John Omotani, Tünde Fülöp

Chalmers University of Technology, Department of Physics

9th Plasma Kinetics Working Group Meeting
July 26, 2016
Edge rotation

- Flow shear suppresses turbulence
- Rotation stabilizes MHD modes (e.g. resistive wall mode, neoclassical tearing mode)
- Edge sets the boundary condition for core rotation profile

Need to understand momentum transport in edge

- Neutrals present inside separatrix, large cross-field mobility

Role of neutrals?
Role of neutrals?

JET results:

- Pedestal toroidal rotation is higher in “corner” divertor configuration, and it is affected by fueling

![Diagram of divertor geometry](image_url)

Fig 1a (above): Divertor geometry used in JET (horizontal=blue; corner=green; vertical=red). The cryogenic pump is also pictured in black.

![Graphs showing pedestal characteristics](image_url)

Fig 5: Clockwise from top to bottom: pedestal density, electron and ion pedestal pressure and toroidal velocity at the top of the pedestal for the three divertor configurations at different power and gas injection rate.

E. Joffrin et al., *25th IAEA Fusion Energy Conference (2014).*
Effect of geometry? TCV data

TCV results:

- Rotation profile shifts by changing X-point location

FIG. 1. Representative plasma geometries, varying \tilde{R}_X, in LSN (lower row) and USN (upper row) configurations.

FIG. 6. LFS and HFS carbon velocity measurement points (dots) and fitted profiles (lines) for an HFS ($\tilde{R}_X = -0.74$) and LFS ($\tilde{R}_X = +0.88$) X-point. The approximate core-edge boundary location $\rho = 0.85$ is marked with red circles. CXRS measurement error bars are comparable to point scatter.

Momentum transport and E_r

- Standard neoclassical theory, for low flow (i.e. subsonic)
 - Viscosity is small, higher order quantity
 - Particle fluxes automatically ambipolar to lowest order, independent of E_r
 - Need f_i very accurately to set E_r

- At the edge other effects can give sizable momentum transport
 - Ion orbit losses
 - Toroidal field ripple or resonant magnetic perturbations
 - Sharp profile variations, $\rho_p/L_\perp \sim O(1)$
 - Transport by neutral particles

Background

Istvan Pusztai 2016 Vienna
Neutral momentum transport

- Low concentration, but high mobility
 - Can affect momentum transport strongly

Result: E_r is determined by major radius of neutrals
 - Control possible
 - e.g. fueling location

- Neutrals may be concentrated near X-point
 - Move X-point to change location of neutrals

- Consider intrinsic rotation (i.e. no torque) and steady state
 - ITER-relevant case
 - Momentum flux ($\propto n_n$) vanishes, independent of n_n

Analytical results

\[V_\zeta \propto \frac{dT_i}{d\psi} F_V, \text{ neutral density is localized to } \theta_* \]
Neutral momentum flux

- Charged particle momentum equation, no torque, steady state

\[\langle e_a \Gamma_a \cdot \nabla \psi \rangle = \langle R\hat{\phi} \cdot \nabla \cdot \pi_a \rangle - \sum_b \langle R\hat{\phi} \cdot R_{a,b} \rangle \approx 0 \]

- For neutrals, viscosity balanced by friction on ions

\[0 = \langle R\hat{\phi} \cdot \nabla \cdot \pi_n \rangle - \langle R\hat{\phi} \cdot R_{n,i} \rangle \]

- Require ambipolar flux

\[0 = \sum_{a\&n} \langle e_a \Gamma_a \cdot \nabla \psi \rangle \approx \langle R\hat{\phi} \cdot \nabla \cdot \pi_n \rangle \]

\[\Rightarrow \langle R\hat{\phi} \cdot \pi_n \cdot \nabla \psi \rangle = 0 \quad \text{with no external torque} \]

- Gives constraint for \(E_r \)
Short mean-free-path neutral kinetic equation

- Neutral dynamics is dominated by charge exchange with ions

\[\mathbf{v} \cdot \nabla f_n = C_{\text{CX}}(f_n) \approx \frac{1}{\tau} \left(\frac{n_n}{n_i} f_i - f_n \right) \]

where \(\tau^{-1} = n_i \langle \sigma v \rangle_{\text{CX}} \)

- Solve perturbatively in short CX mean-free-path
 - \(\lambda_n \approx 0.8 \text{ cm} \) for \(n_i = 10^{20} \text{ m}^{-3}, \sigma_{\text{CX}} = 6 \times 10^{-15} \text{ cm}^2 \)
 - \(f_n \) is calculated in terms of \(f_i \)
 - Momentum flux moment of \(f_n \) written as moment of \(f_i \)

Solution for ion distribution

- Use PERFECT code2 to compute f_i
 - neglect finite orbit-width effects here (radially local)
- Inputs to each PERFECT call:
 - magnetic geometry
 - ion temperature gradient $d_{\psi}T_i$
 - radial electric field $d_{\psi}\Phi_0$
- Outer loop iterates to find $d_{\psi}\Phi_0$, calling PERFECT to compute f_i

Neutral momentum transport

- Neoclassical f_i from PERFECT + Short mean-free-path neutral solution → Momentum flux carried by neutrals

- Iterate to find E_r so that momentum flux vanishes

- Limitations
 - Neutrals dominate momentum transport
 \[
 \frac{n_n}{n_i} \gtrsim 3 \cdot 10^{-7} \frac{L_n}{L} \frac{n_i^{19/m^3} q^2}{B^2_{[T]} T_{i[keV]}} \sim 10^{-6} - 10^{-4}
 \]
 - Ion distribution is not directly affected by neutrals
 \[
 \frac{n_n}{n_i} \lesssim 0.08 \frac{L_n}{R} \frac{n_i^{19/m^3} \sqrt{T_{i[keV]}}}{B_{[T]}} \sim 10^{-3}
 \]
 - Short neutral CX mean-free-path, $\lambda_{CX} \ll L$
 - Local neoclassical solutions $L \gg \rho_{pi}$ (no pedestal)
Simulations

- Investigate effect of poloidally localized neutral density
- ITER-like parameters, near separatrix
 - Model equilibria [Cerfon & Freidberg]
 - Simulate $\psi_N = 0.95$ surface
 - Baseline parameters $n_i = 10^{20} \text{ m}^{-3}$, $T_i = 300 \text{ eV} \Rightarrow \nu_\star = 6.95$
- Scanning magnetic geometry and/or neutral location
• θ: baseline geometry, neutrals located at different poloidal angles

• δ, R_X and Z_X: neutrals located at bottom of the flux surface (close to X-point), triangularity, and the horizontal and vertical position of the X point is varied, respectively.
Results: major radius of neutrals determines E_r, rotation

- All 4 types of scan collapse, R_n determines the behavior\(^3\)

Baseline parameters: cyan $n = 10^{20} \text{m}^{-3}$, $T_i = 300 \text{eV}$, $\nu_* = 6.95$
Others: blue $\nu_* = 0.695$; yellow $\nu_* = 69.5$; red $\nu_* = 695$
$1/L_T = 10 \text{m}^{-1}$, $1/L_n = 0$
(arbitrary choices, but $V_\varsigma \propto 1/L_T$ and E_r is simply offset by a/L_n)

Impurity rotation

- We can also add an impurity species, here trace Carbon ($Z = 6, \frac{n_C}{n_e} = 0.0004$)
- Show scan in poloidal position of neutrals:

![Graph showing impurity rotation](image)

Lines Deuterium; Crosses Carbon

Baseline parameters: cyan $n = 10^{20} \text{ m}^{-3}$, $T_i = 300 \text{ eV}$, $\nu_* = 6.95Z_{\text{eff}}$

Others: blue $\nu_* = 0.695Z_{\text{eff}}$; yellow $\nu_* = 69.5Z_{\text{eff}}$; red $\nu_* = 695Z_{\text{eff}}$
Summary

- Calculate E_r and rotation when neutral viscosity dominates
- Major radius of neutrals controls solution
- Ways to influence edge rotation:
 - move X-point
 - change fueling location

Future work

- Experimental modeling
 - Rotation measurements
 - Inboard vs. outboard fueling?
 - Move X-point (but same target configuration)?

- Theory/code developments
 - Allow for torque from neutral beam injection
 - Higher neutral density
 - Affects ion distribution function
 - Density pedestal
 - Requires radially-global solution
 - Non-linear solve to obtain $\Phi_0(\psi)$