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Introduction
•  Boundary conditions for fluid codes used to simulate the 

SOL plasma
•  Ones currently used* are obtained using fluid equations: 

aim is to obtain boundary conditions using a kinetic 
treatment

•  Could be used with future drift kinetic codes of SOL
•  Interesting problem from a purely theoretical point of 

view: generalizing gyrokinetics to strongly distorted 
orbits in the magnetic presheath geometry

* J. Loizu, P. Ricci, F.D. Halpern and S. Jolliet, Phys. Plasmas 19, 122307 (2012).
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Geometry

Figure: Local geometry near the 
divertor target S of a tokamak. 
Plane W (in green) contains the 
normal to the target nS and the local 
magnetic field direction close to S. 
Plane C contains nS and the 
toroidal direction ζ, while plane A 
is the flux surface containing ζ and 
the poloidal direction θ. The angle 
α is the angle that the magnetic 
field makes with the target.
	

through the looking glass…

flux surface

divertor target

ζ

Figure (left) from: P.C. Stangeby, The plasma boundary of magnetic fusion devices (2000) 
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Boundary layers

Figure: The plane of the figure 
is plane W of the previous slide, 
which contains the magnetic 
field line that impinges on the 
wall and the wall normal. The 
width of the different boundary 
layers is shown. The coordinate 
axes used to write our 
equations are labelled on the 
left, and the angle α, the 
electric field E and magnetic 
field B are shown.

N.B. wall = divertor target

Width Estimate
Collisional layer αλmfp 100 mm
Magnetic presheath ρi 0.7 mm
Debye sheath λD 0.02 mm

⇒ λD << ρi << αλmfp
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Estimates using data from: F. 
Militello and W. Fundamenski, 
Plasma Phys. Control. Fusion, 
53, 095002 (2011)



Assump+ons	
•  Focus on ion gyroradius 

scale ρi => derive magnetic 
presheath equations

•  λD << ρi ~ αλmfp => include 
collisions but keep 
quasineutral

•  Angle α satisfies (1º=) 0.02 ~ 
(me/mi)½ << α << 1

•  Magnetic field constant and 
presheath electrostatic

•  Turbulent gradients parallel 
to the wall inherited from 
outside magnetic presheath

α<<1 and δ=ρi/l <<1

•  ∂/∂y~1/l~δ/ρi and ∂/∂z~δ/l~δ2/ρi
•  Order ∂/∂t~δ2Ω << presheath 

timescale δΩ
•  Maximal ordering α~δ<<1

neglect
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N.B. l~1cm => δ~0.1



Assumption: (not too) small angle
Figure: A schematic which shows that, when very 
close to the wall, ions intersect the wall during their 
gyromotion while electrons are tied much more closely 
to the field line and have to drift along B with speed 
~vt,e much faster than the characteristic ion speed.. At 
small enough angle α, the ions reach the wall more 
quickly than thefaster-moving electrons, which travel 
almost parallel to the wall.

•  Q: When does it take an 
ion and an electron the 
same time to reach the 
wall?
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•  Ion intersects wall after a single orbit: time~ρi/vt,i
•  Electrons travel along field at vt,e reaching wall after time d/vt,e
•  Times equal when α≈ρi/d=√(me/mi)
•  In order to assume negatively charged wall, require electrons 

to reach wall much faster than ions
•  Corresponds to α>>√(me/mi)

	



The zeroth order problem: α=δ=0
•  Equations of motion of single particle are

•  Constants of motion:

v̇

x

= �Ze

mi

d�(x)

dx

+ ⌦v
y

v̇

y

= �⌦v
x

v̇

z

= 0

Orbit position x̄ = x + (1/Ω)vy

Perpendicular energy U⟂ = ½vx
2 + ½vy

2 + Zeφ/mi

Total energy U = U⟂ +  ½vz
2 

7	See also: R.H. Cohen and D.D. Ryutov, Phys. Plasmas 5, 808 (1998)



•  Modified ion gyrofrequency Ωmod

•  Gyrophase ϕ

Gyrophase
•  The zeroth order motion periodic 

when magnetic force large enough to 
make the ion turn

•  Can write vx = σx[2(U⟂ - χ(x))]½ where 
σx=±1

•  Both x and vx are periodic if particle is 
trapped around a minimum of the 
effective potential χ(x) = ½Ω2(x-x̄)2 + 
Zeφ(x)/mi
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Change	of	variables	
•  Can describe particle motion entirely using new set of 

variables
 (x, y, z, vx, vy, vz) à (x̄, y, z, U⟂, ϕ, U, σ‖)

•  x̄, U⟂ and U are constant and y, z are symmetry directions
•  Define gyroaverage of a quantity as an average over ϕ while 

holding all other variables fixed	
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Single particle motion in system 
with α~δ<<1	

•  The exact equations of motion are

small

neglect

neglect ≈1

≈1

•  Changes in the orbit parameters:
ExB drift parallel to wall

Orbit drift normal to wall

Perpendicular energy 
change
Total energy change
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First order constants: y* and μ
•  Frame exists in which zeroth order  

is periodic à
•  => An adiabatic invariant μ exists, 

with <dμ/dt> = O(α2μ) when α~δ<<1
•  Quantity y* proportional to z-

canonical momentum derived by 
integrating dvz/dt = αΩvy to obtain vz 
=  αΩ(y – y*), with dy*/dt = O(α2y*) 

Adiabatic 
invariant*

replaces U⟂

y-star § replaces y

new change of variables: (x̄, y, z, U⟂, ϕ, U, σ‖) à (x̄, y*, z, μ, ϕ, U, σ‖) 
11	* R.H. Cohen and D.D. Ryutov, Phys. Plasmas 5, 808 (1998)

§ D.L. Holland, B.D. Fried and G.J. Morales, Phys Fluids B, 5, 1723 (1993)
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Gyrokine+c	equa+on	

first order ~αΩF

gyroaverage

To solve it, require a form for the potential φ(x,y) (that we will 
determine) and boundary conditions:
1.   F = 0 at yà±∞ (corresponds to outside SOL)
2.   F = 0 at U⟂à∞
3.    F = F∞ (y, U⟂, U) for <dx̄/dt>ϕ < 0  at x̄à∞ 
4.   F = 0 for open orbits (ones that intersect wall)

F ≈ <F>ϕ
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Geometry

Figure: Local geometry near the 
divertor target S of a tokamak. 
Plane W (in green) contains the 
normal to the target nS and the local 
magnetic field direction close to S. 
Plane C contains nS and the 
toroidal direction ζ, while plane A 
is the flux surface containing ζ and 
the poloidal direction θ. The angle 
α is the angle that the magnetic 
field makes with the target.
	

through the looking glass…

flux surface

divertor target

ζ

Figure (left) from: P.C. Stangeby, The plasma boundary of magnetic fusion devices (2000) 
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Gyrokine+c	equa+on	

first order ~αΩF

gyroaverage

F ≈ <F>ϕ
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small small

Boundary conditions are:
•   F0 = F0

∞ (y*, μ, U) for <dx̄/dt>ϕ < 0 at x̄à∞
•   F0 = 0 for open orbits	
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Quasineutrality	
•  The assumption α>>(me/mi)½ => Boltzmann electrons
     ne=ne,∞exp[e(φ-φ∞)/Te]
•  λD << ρi => quasineutrality holds throughout magnetic 

presheath
•  To obtain ion density, integrate F0 in velocity space using (x̄, 

U⟂, U) instead of (vx, vy, vz)*

•  Quasineutrality (above) and the gyrokinetic equation allow 
to solve for F and φ self consistently in the magnetic 
presheath

* M.J. Gerver, S.E. Parker and K. Theilhaber, Phys. Fluids B, 2, 1069 (1990) 
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Collisionless magnetic presheath
•  If ρi << αλmfp, gyrokinetic equation becomes (using green 

variables)

•  The solution is therefore

•  An iteration scheme with quasineutrality would allow to 
determine the self-consistent φ(x,y)

16	See also: R.H. Cohen and D.D. Ryutov, Phys. Plasmas 5, 808 (1998).
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Orbit 
opening
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Open orbits



Why are open orbits 
important close to the wall?

•  At exit of quasineutral presheath, 
electric field diverges (breakdown 
of quasineutrality) but potential 
does not (φ ~ √x)* 

•  Expect potential of this form à
•  Electric force always overcomes 

magnetic force (=ZevyB) close to x=0
•  =>Effective potential always has 

maximum near wall à
•  No closed orbits => need open orbit 

density

18	* K.-U. Riemann, Journal of Physics D: Applied Physics 24, 493 (1991)
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Quasineutrality without 
open orbits	

•  Closed orbit density ni,closed goes 
to zero at wall

•  Electron density ne~ n∞exp[e(φ-
φ∞)/Te] ~ n∞exp[e∆φMPS/Te]

•  Gives ∆φMPS=-∞
•  Density of ion open orbits 

required to obtain finite potential 
jump

•  Zni,open ≈ ne near wall

ni,closed/e / n∞	

x / ρi	
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Open orbit density
•  Conservation of distribution function F in phase space

•  Density is
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•  Confirmed by calculation of velocity corrections near X-point
•  Divergence at vx=0: calculate correction at X point
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Preliminary numerical results

Without
With

Green: electron density
Blue: ion density

open orbits

•  Analytically, ni,open ~ αn∞ 
•  => ∆φMPS ~  (T/e) ln α

x/ρi	

x/ρi	

ni/e/n∞	

ni/e/n∞	
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Numerical results shown in plots 
obtained using:
•  α=0.1
•  F∞~v‖2exp(-m(v‖2+2μB)/2Ti)
•  φ=1.05*ln(1/α)*exp(-0.19√x-0.49x)



Conclusions	
•  Derived gyrokinetic equations of ions in magnetic presheath
•  Assumed small magnetic field to wall angle α, small gradients 

parallel to the wall (δ<<1) and constant B field
•  Assumed electron repelling wall => Boltzmann electrons
•  Derived form of quasineutrality
•  Proposed and currently applying iteration scheme that could 

solve for collisionless magnetic presheath
•  Solution valid to lowest order in α and δ
•  Open orbits are important close to the wall
•  In progress: quantifying effects of open orbits near the wall + 

including open orbit density in numerical work
•  Future work: study the purely collisional layer αλmfp wide
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BACKUP	SLIDES	
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Assumption: turbulent gradients
•  We include weak gradients parallel 

to the wall of the electrostatic 
potential φ and the ion and electron 
densities, due to the width of 
turbulent structures l=ρi/δ with 
δ~α<<1

•  These gradients are in the y 
direction, across the magnetic field

•  The direction  (almost) parallel to 
the magnetic field is associated with 
even smaller gradients because 
turbulent structures are elongated 
along this direction: vz∂/∂z~α2Ω≈0

•  Time derivatives are ordered very 
small: ∂/∂t~α2Ω≈0

neglect

Figure:  The elongation of a turbulent 
structure along the magnetic field causes 
the gradients in the z direction to be 
very small. The characteristic length 
scale in the y direction (out of the page) 
is l.
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Assumption: (not too) small angle

Figure: A schematic which shows that, when very 
close to the wall, ions intersect the wall during their 
gyromotion while electrons are tied much more closely 
to the field line and have to drift along B with speed 
~vt,e much faster than the characteristic ion speed.. At 
small enough angle α, the ions reach the wall more 
quickly than thefaster-moving electrons, which travel 
almost parallel to the wall.

•  When does it take the 
same time for an ion and 
an electron to reach the 
wall?

•  Suppose we are very 
close to the wall

•  It takes an ion a single 
orbit to intersect the wall 
~ρi/vt,i

•  Electrons have a much 
smaller Larmor radius, so 
they travel parallel to the 
field at vt,e and reach the 
wall after a time d/vt,e

•  Times equal when 
    α≈ρi/d=√(me/mi) 25	



Assumption: (not too) small angle (2)
•  In order to assume a 

negatively charged wall, we 
require electrons to reach it 
much faster than ions

•  Corresponds to α>>√(me/mi)
•  Provided this is satisfied, 

almost all of the electrons are 
repelled by the wall

•  We can therefore assume 
that electrons are in 
equilibrium and are 
Boltzmann distributed

     ne=ne,∞exp[e(φ-φ∞)/Te]

Figure: A schematic which shows that, when 
very close to the wall, ions intersect the wall 
during their gyromotion while electrons are tied 
much more closely to the field line and have to 
drift along B with speed ~vt,e much faster than 
the characteristic ion speed.. At small enough 
angle α, the ions reach the wall more quickly 
than thefaster-moving electrons, which travel 
almost parallel to the wall.
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Orbit parameters
•  dvy/dt = - Ωvx => vy = Ω(x̄ - x) where x̄ is 

the orbit position
•  Perpendicular energy U⟂ and total energy 

U are conserved

Orbit position x̄ = x + (1/Ω)vy

Perpendicular energy U⟂ = ½vx
2 + ½vy

2 + Zeφ/mi

Total energy U = U⟂ +  ½vz
2 

27	



Kine+c	equa+on	

small small small

change variables

zeroth order ~ΩF

expand F = F0 + F1 + O(α2F) to get  

=> F0 = <F0>ϕ
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Changes in the orbit parameters

•  Orbit parameters become slowly changing variables: dx̄/dt = - 
αvz + (1/B)∂φ/∂y, dU⟂/dt = -αΩvyvz, dU/dt = O(α2U) ≈ 0

•  Using vz = v‖ = σ‖[2(U-U⟂)]½ (with σ‖ = vz/|vz|) and <vy>ϕ = (1/
B)<dφ/dx>ϕ we obtain the gyroaveraged time derivatives

ExB drift parallel to 
wall
Orbit drift normal to 
wall
Perpendicular energy 
change
Total energy change
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Gyrokine+c	equa+on	

first order ~αΩF and gyroaverage

small small

expand F and recover F0 = <F0>

Boundary conditions are:
•   F0 = F0

∞ (y*, μ, U) for <dx̄/dt>ϕ < 0 at x̄à∞
•   F0 = 0 for open orbits	 30	


