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m Stellarator drift-kinetic equation at low collisionality: the 1/v regime.

m In a generic stellarator the expansion of the distribution function around a
Maxwellian breaks down at lower collisionalities and the drift-kinetic equation
becomes radially non-local.

m Omnigeneous stellarators and stellarators close to omnigeneity.

m In stellarators close to omnigeneity the expansion around a Maxwellian can
be carried out for collisionalities below the 1/v regime and a radially local
drift-kinetic equation can be derived.

m Neoclassical transport in stellarators close to omnigeneity below the 1/v
regime:
m /v regime and superbanana-plateau regime.

m The ideas in this work can be used to build fast neoclassical codes. An
example: the /v regime in LHD.

Remark: A mass ratio expansion y/m./m; < 1 is assumed. Hence,
ion-electron collisions are dropped. We focus on ion transport.

Remark: The effect of large aspect ratio is not studied.

Ivédn Calvo, CIEMAT, Madrid Tangential drifts in stellarators close to omnigeneity



Drift-kinetic equation in stellarators

m Spatial coordinates {1, o, l}: v is a radial coordinate, « is a periodic coor-
dinate that labels magnetic field lines and [ is the length along the line.

Velocity coordinates {v,A\,c}: v is the magnitude of the velocity, A =
v? /(v?B) is the pitch-angle coordinate and o = v|/|y)||.

m Define the normalized gyroradius as p;x = p;/Lo < 1, where Lg is the
typical variation length of B. In the standard drift-kinetic expansion

m the distribution function is expanded as F; = Fis; + Fi1 + ..., where
Fi1 ~ pi« Fari and Fyy; is a Maxwellian distribution with zero flow, and
with density n;() and temperature T;(¢)) constant on flux surfaces;
m the electrostatic potential is expanded as
o, a,l) = o) + o1(¥, 1) + ..., with @9 ~ T;/(Z;e) and
©1/%0 ~ Pix-
m The drift-kinetic equation for G;1 = Fj1 + (Z;ep1 /T;) Fari is

v01Gi1 + Yivari - Vi Fa = C5[Gal,

where v ; is the ion magnetic drift, T; involves the gradients of n;, T; and
0, and CY; is the linearized ion-ion collision operator.
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Drift-kinetic equation at low collisionality: the 1/v regime

v 0Gi1 + Yivari - VY Fy = C5 (G
m Define the ion collisionality as v = v;;Lo/vy; < 1, where vy = \/m
is the thermal speed. If v;, < 1, we can expand in the collisionality.
m To O(V;*l) one finds that G, is constant on the lowest-order orbits.
m G, is found by averaging the O(v2,) equation:
m For trapped trajectories we take the orbit average

l l

bo 1 by 1
> / —Ch[Ga]dl = | 2 / —var; - Vrdl | i Fa,
= Ju, vyl by, |01l

where [, and [, are the bounce points of the orbit.
m For passing particles we take the flux surface average

—1 v
<B‘U\|| lcii[GﬂDw =0.
m These equations imply G;; ~ Vi_*lpv',*F]\Mv which is fine as long as

pix K Vix < 1. That is, if the expansion in v;, is subsidiary with
respect to the expansion in p;,.
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Breakdown of the expansion when v;, < p;.

m G~ yi_*lpi*FMi in the 1/v regime.

m The expansion around the Maxwellian breaks down if v, < p;. be-
cause G;; becomes as large as F); (and ¢; as large as ).

m In addition, terms like

(VM,i + VE) . VwawGil and (VMJ' + VE) -Vaid,Gi,

where v is the E x B drift, have to be taken into account, and the
drift-kinetic equation becomes radially non-local (at least, one
cannot guarantee that it remains local).

m Collisionality regimes below the 1/v regime are relevant in stellarator
plasmas.

m Do we have to live with radially non-local neoclassical equations?
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Orbit-averaged radial magnetic drift in stellarators

m In general, the orbit average of the radial
magnetic drift, vs,; - Vi), does not vanish
for trapped particles in a stellarator.

m Stellarators in which the average of vy ; -
V) vanishes for all trajectories are called
omnigeneous.  They exhibit neoclassical
transport levels similar to those of toka-
maks.

The idea: In the 1/v regime the deviation from the Maxwellian distribution is
proportional to the averaged radial magnetic drift. In stellarators close to
omnigeneity this average is small, by definition. This might introduce in the
problem a small parameter that restores radial locality.
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Formal definition of omnigeneity

The second adiabatic invariant is defined for each trapped trajectory as [Cary
and Shasharina (1997), Parra et al. (2015)]

b2
J = 2/ |’U|||dl.
lp1

m A stellarator is omnigeneous if and only if d,J = 0 for every trapped tra-
jectory.
m Equivalent and useful definition: a stellarator is omnigeneous if and only if

b2
Bo | AW, B, e, 1),0,\)dl = 0,

lp1

for any function A that depends on « and [ only through B.

In what follows we deal with stellarators whose magnetic field has the

form
B =B, + /By,

where B is omnigeneous, B; ~ By and 0 < § < 1. We also assume that
|VlnB0\*1 ~ |V1nBl\*1 ~ L.
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Drift-kinetic equation for v, < p;. in stellarators close to

omnigeneity

Assuming v, ~ p;x, the expansion in § < 1 allows to prove that

m Fy = Fai +6FY) + ..., where Fyy; is a Maxwellian with zero flow

and constant on flux surfaces and Fi(ol) ~ Fyi.

(1)

m The non- adiabatic component G,y can be written as
Ggé) = (1/),1) A\, o) + gZ (1/1,04 v, \), where g(l) vanishes in the
passing region and can be chosen so that f )da

m h( ) is Maxwellian and can be absorbed in the definition of Fjy;.

(D4 . where ¢o is a flux function and gogl) ~ 0.

Hence, we only need to find a drift-kinetic equation for g,(l).

2

Q=+ 0p;

Remark: From now on, a superindex (0) refers to quantities computed
using By, and a superindex (1) to perturbed quantities.
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Drift-kinetic equation for v, < p;. in stellarators close to

omnigeneity

Expanding in § we get a radially local equation (compare to [Sugama
PoP 2016] and [Landreman PoP 2014]),

o Iy
—E)¢J(°)8ag§1)+E)aJ(1>TiFMi:ZZze\pt / © _dl o oy

mic Ju,, "

where W, is the toroidal magnetic flux over 27, the prime stands for
differentiation with respect to v,

ZieUimy ——
8¢J = —% (Vd,i . VOé)

and 7o
Ood = 21 (G TN

T
Here, vy ; = var; + v, the overline denotes orbit average and 7, is the
corresponding orbit time.
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Solution of the drift-kinetic equation when v;, << p;

. lp
9, 70g o Wy, .:ZZze‘l’% 20 dl o) (1)
(%,J 80(91 +8o¢J TzFMz mac l ,UI(O)|CM [gz ]

o b10

m Expanding in v /pix < 1 is the same as expanding in v;;/w, < 1,
where w, = mica¢J(0)/(Zie\I'QTI§O)) ~ pixVii/ Lo is the precession
frequency due to the tangential drifts.

m To lowest order in the v;; /w, expansion one obtains gZ(l) =g0+...,

with
_ 1 J L TJOda ) T Furs
9o = &Z,J(O) o ) a | Lil'pr.

m It is easy to realize that gy does not contribute to the energy flux, Q;.

m Neoclassical transport when v;, < p;, is dominated by two small
layers in phase space.
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Discontinuity at the boundary between trapped and

passing particles: the /v regime

m The distribution function is zero in the passing region, but 91(1) at the bound-

ary of the trapped region is given by g4 = go(Ac) # 0, with A; = 1/Bg max-
m This discontinuity is the consequence of dropping the collision term, and
points at the existence of a small boundary layer around A. where the dis-
tribution function develops large variations in A.
1)

m Write g; ’ = go + gb1 + ..., where gy, is the solution in the layer.
m The equation for gy, is
Dy J ) 0agu1 + vAEDRgH = —VAEDX G0, go1(Ae) = =g+, gn(A =00) =0.
where
— ~ _ 1 e Y
0y JO) = ayIn(az(A-X\.)), go=—= (IO - — JOda ) T Fayi,
0y J© ™ Jo
— Z;eW, 2), [0
JO = 1 n(E@(\ = \o)), €:= % By'\/1— ABodl.
iC v ll’lO
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Discontinuity at the boundary between trapped and

passing particles: the /v regime

OyJ 0)3a9b1 + €D g = —1a&D3G0, gni(Ae) = g4 go1(A = 00) = 0.
m |t is straightforward so see that the typical size of the layer is
BoAX ~ (l/ii/wa)l/Q
up to quantitatively important logarithmic corrections!

m Noting that the coefficients of the homogeneous equation do not de-
pend on «, the equation can be easily solved by Fourier transformation.

m The energy flux can be expressed as

27r m2c v? Z-e =

g2 oM Mmic i€Po

Q; E d — 4 — dAJD _, gpin
ST m/ v ( m; )/,\ goLm

which has a typlcal size
1/
Qi o~ ~ 2 “/2pl*n mivi Ly 'Sy,

where Sy, is the area of the flux surface.
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Zeros of w,: the superbanana-plateau regime

1 1 2
— 1) _ (1) ) )
g0 8¢ J(0) <J 3 A J da) Tleul.

m When the precession frequency w, vanishes, gy diverges.

m Denote by A,(, v) the values of A where w,, = 0.

m Write gEl) =go+ g1 + ..., where g, will be localized in the coordinate A
around \ = \,.

m The equation for gy is

w(’l,’!‘()\ - AT)aagrl + V)\Xra?\grl = Sm

with .
2\, b20
) =2 [ B 0 VIR By,
Ty, 7lo10

Tl)(S") (w7 U) = 7-b(O) (w’ v, /\T(wa U))) wéx,r(z/)7 ’U) = 8>\wa ('(/)7 v, A)|/\:)\T(1p,v)
and S,.(, a,v) == mic/(ZieWry )00 d D rox, (o) TiFati.
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Zeros of w,: the superbanana-plateau regime

w/oz,r()‘ - )\r)aagrl + V)\Xrag\grl = ST

m Again, observing that the coefficients of the homogeneous equation do not
depend on « we can Fourier transform and solve the equation, obtaining

o 1/3 A — /\ B 1 3 d
Grl,n = / n2/3)\rﬁ exXp )\ z 32’ zZ,
where s
UxXr
o= :Tv) <!

gives the width of the layer.
m The energy flux in this case is independent of the collisionality and reads
ATdmic? S [Umex e v? Zecp
4 —_52 i hal 0 W12y g,
Qz,sb—p =-0 ZEGQ\I// Z/ (0) ( )|J ,r| T’LFMldU)

t 5p—1YYmin wa,rbr

with J,(Ll}n = Jﬁl)(w,v,)\r(w,v)). The minimum and maximum values of v
for which ), exists are denoted by vnmin, Umax, respectively.
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Additive formula for the ion energy flux when v, < p;.

m Since both layers are small and are located around different points of
phase space, their contributions to transport are additive. Then, for
Vix << Pixs

Qi = Q; v + Qisb—p-

m The weight of each term is determined by the value of vyin:
m If vy < vy, then the superbanana-plateau regime dominates over the
Vv regime.
m If, on the contrary, vy, > vy, then the superbanana-plateau regime
will be subdominant with respect to the /v regime.
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A glance to numerical applications based on all the above:

D11 neoclassical coefficient in LHD at low collisionalities

Discharge number 127689, ECH phase, Ry = 3.67m.

10 E v=3x107§ ——
102 F E/v=1x10"
E/v=3x107 —®—
101 E v=lx1074 —a— ]
—_ EI/v=3x1074
= 100k EI/v=1xlOO
< E/v=0x10" —®&—
= 10! | -
A n .
2 Emn
107 ]
10° |
10* 6 5 ) 3 2 0 ‘0
10 10~ 10 10~ 10 10 10
viv [m'l]

m One point with DKES (squares) takes about 1 hour of CPU time.
m One point with the code that José Luis Velasco is building (points
joined by solid lines) takes about 1 minute of CPU time.
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Conclusions and further work

m We have started a line of research that allows to deal in a systematic
way with stellarators close to omnigeneity.

m In this work we have focused on neoclassical transport for collision-
alities below the 1/v regime, and we have found expressions for the
fluxes in the /v and the superbanana-plateau regimes.

m A linear equation that determines the component of the electrostatic
potential that is non-constant on the flux surface can be deduced (not
addressed in this talk).

m Concepts and results of this work can be used to build fast neoclassical
codes, that might be included in optimization loops.
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