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Summary

Stellarator drift-kinetic equation at low collisionality: the 1/ν regime.

In a generic stellarator the expansion of the distribution function around a
Maxwellian breaks down at lower collisionalities and the drift-kinetic equation
becomes radially non-local.

Omnigeneous stellarators and stellarators close to omnigeneity.

In stellarators close to omnigeneity the expansion around a Maxwellian can
be carried out for collisionalities below the 1/ν regime and a radially local
drift-kinetic equation can be derived.

Neoclassical transport in stellarators close to omnigeneity below the 1/ν
regime:

√
ν regime and superbanana-plateau regime.

The ideas in this work can be used to build fast neoclassical codes. An
example: the

√
ν regime in LHD.

Remark: A mass ratio expansion
√
me/mi � 1 is assumed. Hence,

ion-electron collisions are dropped. We focus on ion transport.

Remark: The effect of large aspect ratio is not studied.
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Drift-kinetic equation in stellarators

Spatial coordinates {ψ, α, l}: ψ is a radial coordinate, α is a periodic coor-
dinate that labels magnetic field lines and l is the length along the line.

Velocity coordinates {v, λ, σ}: v is the magnitude of the velocity, λ =
v2⊥/(v

2B) is the pitch-angle coordinate and σ = v||/|v|||.
Define the normalized gyroradius as ρi∗ = ρi/L0 � 1, where L0 is the
typical variation length of B. In the standard drift-kinetic expansion

the distribution function is expanded as Fi = FMi + Fi1 + . . . , where
Fi1 ∼ ρi∗FMi and FMi is a Maxwellian distribution with zero flow, and
with density ni(ψ) and temperature Ti(ψ) constant on flux surfaces;
the electrostatic potential is expanded as
ϕ(ψ, α, l) = ϕ0(ψ) + ϕ1(ψ, α, l) + . . . , with ϕ0 ∼ Ti/(Zie) and
ϕ1/ϕ0 ∼ ρi∗.

The drift-kinetic equation for Gi1 = Fi1 + (Zieϕ1/Ti)FMi is

v||∂lGi1 + ΥivM,i · ∇ψFMi = C`ii[Gi1],

where vM,i is the ion magnetic drift, Υi involves the gradients of ni, Ti and
ϕ0, and C`ii is the linearized ion-ion collision operator.
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Drift-kinetic equation at low collisionality: the 1/ν regime

v||∂lGi1 + ΥivM,i · ∇ψFMi = C`ii[Gi1]

Define the ion collisionality as νi∗ = νiiL0/vti � 1, where vti =
√
Ti/mi

is the thermal speed. If νi∗ � 1, we can expand in the collisionality.

To O(ν−1i∗ ) one finds that Gi1 is constant on the lowest-order orbits.

Gi1 is found by averaging the O(ν0i∗) equation:

For trapped trajectories we take the orbit average∑
σ

∫ lb2

lb1

1

|v|||
C`ii[Gi1] dl =

(
2

∫ lb2

lb1

1

|v|||
vM,i · ∇ψ dl

)
ΥiFMi,

where lb1 and lb2 are the bounce points of the orbit.
For passing particles we take the flux surface average〈

B|v|||−1C`ii[Gi1]
〉
ψ

= 0.

These equations imply Gi1 ∼ ν−1i∗ ρi∗FMi, which is fine as long as
ρi∗ � νi∗ � 1. That is, if the expansion in νi∗ is subsidiary with
respect to the expansion in ρi∗.

Iván Calvo, CIEMAT, Madrid Tangential drifts in stellarators close to omnigeneity 4



Breakdown of the expansion when νi∗ . ρi∗

Gi1 ∼ ν−1i∗ ρi∗FMi in the 1/ν regime.

The expansion around the Maxwellian breaks down if νi∗ . ρi∗ be-
cause Gi1 becomes as large as FMi (and ϕ1 as large as ϕ0).

In addition, terms like

(vM,i + vE) · ∇ψ∂ψGi1 and (vM,i + vE) · ∇α∂αGi1,

where vE is the E ×B drift, have to be taken into account, and the
drift-kinetic equation becomes radially non-local (at least, one
cannot guarantee that it remains local).

Collisionality regimes below the 1/ν regime are relevant in stellarator
plasmas.

Do we have to live with radially non-local neoclassical equations?
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Orbit-averaged radial magnetic drift in stellarators

In general, the orbit average of the radial
magnetic drift, vM,i · ∇ψ, does not vanish
for trapped particles in a stellarator.

Stellarators in which the average of vM,i ·
∇ψ vanishes for all trajectories are called
omnigeneous. They exhibit neoclassical
transport levels similar to those of toka-
maks.

The idea: In the 1/ν regime the deviation from the Maxwellian distribution is

proportional to the averaged radial magnetic drift. In stellarators close to

omnigeneity this average is small, by definition. This might introduce in the

problem a small parameter that restores radial locality.
Iván Calvo, CIEMAT, Madrid Tangential drifts in stellarators close to omnigeneity 6



Formal definition of omnigeneity

The second adiabatic invariant is defined for each trapped trajectory as [Cary
and Shasharina (1997), Parra et al. (2015)]

J = 2

∫ lb2

lb1

|v|||dl.

A stellarator is omnigeneous if and only if ∂αJ = 0 for every trapped tra-
jectory.

Equivalent and useful definition: a stellarator is omnigeneous if and only if

∂α

∫ lb2

lb1

Λ(ψ,B(ψ, α, l), v, λ)dl = 0,

for any function Λ that depends on α and l only through B.

In what follows we deal with stellarators whose magnetic field has the
form

B = B0 + δB1,

where B0 is omnigeneous, B1 ∼ B0 and 0 ≤ δ � 1. We also assume that

|∇ lnB0|−1 ∼ |∇ lnB1|−1 ∼ L0.
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Drift-kinetic equation for νi∗ . ρi∗ in stellarators close to
omnigeneity

Assuming νi∗ ∼ ρi∗, the expansion in δ � 1 allows to prove that

Fi = FMi + δF
(1)
i0 + . . . , where FMi is a Maxwellian with zero flow

and constant on flux surfaces and F
(1)
i0 ∼ FMi.

The non-adiabatic component G
(1)
i0 can be written as

G
(1)
i0 = h

(1)
i (ψ, v, λ, σ) + g

(1)
i (ψ, α, v, λ), where g

(1)
i vanishes in the

passing region and can be chosen so that
∫ 2π
0 g

(1)
i dα = 0.

h
(1)
i is Maxwellian and can be absorbed in the definition of FMi.

ϕ = ϕ0 + δϕ
(1)
1 + . . . , where ϕ0 is a flux function and ϕ

(1)
1 ∼ ϕ0.

Hence, we only need to find a drift-kinetic equation for g
(1)
i .

Remark: From now on, a superindex (0) refers to quantities computed
using B0, and a superindex (1) to perturbed quantities.
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Drift-kinetic equation for νi∗ . ρi∗ in stellarators close to
omnigeneity

Expanding in δ we get a radially local equation (compare to [Sugama
PoP 2016] and [Landreman PoP 2014]),

− ∂ψJ (0)∂αg
(1)
i + ∂αJ

(1)ΥiFMi =
∑
σ

ZieΨ
′
t

mic

∫ lb20

lb10

dl

|v(0)|| |
C
`(0)
ii [g

(1)
i ],

where Ψt is the toroidal magnetic flux over 2π, the prime stands for
differentiation with respect to ψ,

∂ψJ = −ZieΨ
′
tτb

mic
(vd,i · ∇α)

and

∂αJ =
ZieΨ

′
tτb

mic
(vd,i · ∇ψ) .

Here, vd,i = vM,i + vE , the overline denotes orbit average and τb is the
corresponding orbit time.
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Solution of the drift-kinetic equation when νi∗ � ρi∗

− ∂ψJ (0)∂αg
(1)
i + ∂αJ

(1)ΥiFMi =
∑
σ

ZieΨ
′
t

mic

∫ lb20

lb10

dl

|v(0)|| |
C
`(0)
ii [g

(1)
i ]

Expanding in νi∗/ρi∗ � 1 is the same as expanding in νii/ωα � 1,

where ωα = mic∂ψJ
(0)/(ZieΨ

′
tτ

(0)
b ) ∼ ρi∗vti/L0 is the precession

frequency due to the tangential drifts.

To lowest order in the νii/ωα expansion one obtains g
(1)
i = g0 + . . . ,

with

g0 =
1

∂ψJ (0)

(
J (1) − 1

2π

∫ 2π

0
J (1)dα

)
ΥiFMi.

It is easy to realize that g0 does not contribute to the energy flux, Qi.

Neoclassical transport when νi∗ � ρi∗ is dominated by two small
layers in phase space.
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Discontinuity at the boundary between trapped and
passing particles: the

√
ν regime

The distribution function is zero in the passing region, but g
(1)
i at the bound-

ary of the trapped region is given by g+ := g0(λc) 6= 0, with λc = 1/B0,max.

This discontinuity is the consequence of dropping the collision term, and
points at the existence of a small boundary layer around λc where the dis-
tribution function develops large variations in λ.

Write g
(1)
i = g0 + gbl + . . . , where gbl is the solution in the layer.

The equation for gbl is

∂̂ψJ (0)∂αgbl + νλξ∂
2
λgbl = −νλξ∂2λĝ0, gbl(λc) = −g+, gbl(λ =∞) = 0.

where

∂̂ψJ (0) = a1 ln(ã2(λ−λc)), ĝ0 =
1

∂̂ψJ (0)

(
Ĵ (1) − 1

2π

∫ 2π

0

Ĵ (1)dα

)
ΥiFMi,

Ĵ (1) = c1 ln(c̃2(λ− λc)), ξ :=
ZieΨ

′
t

mic

2λc
v

∫ lb20

lb10

B−10

√
1− λcB0 dl.
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Discontinuity at the boundary between trapped and
passing particles: the

√
ν regime

∂̂ψJ (0)∂αgbl + νλξ∂
2
λgbl = −νλξ∂2λĝ0, gbl(λc) = −g+, gbl(λ =∞) = 0.

It is straightforward so see that the typical size of the layer is

B0∆λ ∼ (νii/ωα)1/2

up to quantitatively important logarithmic corrections!

Noting that the coefficients of the homogeneous equation do not de-
pend on α, the equation can be easily solved by Fourier transformation.

The energy flux can be expressed as

Qi,
√
ν = −δ2 2π2m2

i c

Zie

∞∑
n=−∞

in

∫ ∞
0

dvv3
(
v2

2
+
Zieϕ0

mi

)∫ ∞
λc

dλ Ĵ (1)−n gbl,n,

which has a typical size

Qi,
√
ν ∼ δ2

ν
1/2
ii

ω
3/2
α

ρ2i∗nimiv
4
tiL
−1
0 Sψ,

where Sψ is the area of the flux surface.
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Zeros of ωα: the superbanana-plateau regime

g0 =
1

∂ψJ (0)

(
J (1) − 1

2π

∫ 2π

0

J (1)dα

)
ΥiFMi.

When the precession frequency ωα vanishes, g0 diverges.

Denote by λr(ψ, v) the values of λ where ωα = 0.

Write g
(1)
i = g0 + grl + . . . , where grl will be localized in the coordinate λ

around λ = λr.

The equation for grl is

ω′α,r(λ− λr)∂αgrl + νλχr∂
2
λgrl = Sr,

with

χr(ψ, v) :=
2λr

τ
(0)
b,r

∫ lb20

lb10

B−10 (ψ, α, l)
√

1− λrB0(ψ, α, l),

τ
(0)
b,r (ψ, v) := τ

(0)
b (ψ, v, λr(ψ, v)), ω′α,r(ψ, v) := ∂λωα(ψ, v, λ)|λ=λr(ψ,v)

and Sr(ψ, α, v) := mic/(ZieΨ
′
tτ

(0)
b )∂αJ

(1)|λ=λr(ψ,v)ΥiFMi.
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Zeros of ωα: the superbanana-plateau regime

ω′α,r(λ− λr)∂αgrl + νλχr∂
2
λgrl = Sr

Again, observing that the coefficients of the homogeneous equation do not
depend on α we can Fourier transform and solve the equation, obtaining

grl,n = − Sr,n
ω′α,rn

2/3λrβ

∫ ∞
0

exp

(
i
n1/3

β

λ− λr
λr

z − 1

3
z3
)

dz,

where

β :=

(
νλχr
ω′α,rλ

3
r

)1/3

� 1

gives the width of the layer.

The energy flux in this case is independent of the collisionality and reads

Qi,sb−p = −δ2 4π3m3
i c

2

Z2
i e

2Ψ′t

∞∑
n=1

∫ vmax

vmin

nv3

ω′α,rτ
(0)
b,r

(
v2

2
+
Zieϕ0

mi

)
|J (1)
n,r|2ΥiFMidv,

with J
(1)
n,r := J

(1)
n (ψ, v, λr(ψ, v)). The minimum and maximum values of v

for which λr exists are denoted by vmin, vmax, respectively.
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Additive formula for the ion energy flux when νi∗ � ρi∗

Since both layers are small and are located around different points of
phase space, their contributions to transport are additive. Then, for
νi∗ � ρi∗,

Qi = Qi,
√
ν +Qi,sb−p.

The weight of each term is determined by the value of vmin:

If vmin . vti, then the superbanana-plateau regime dominates over the√
ν regime.

If, on the contrary, vmin � vti, then the superbanana-plateau regime
will be subdominant with respect to the

√
ν regime.
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A glance to numerical applications based on all the above:
D11 neoclassical coefficient in LHD at low collisionalities

Discharge number 127689, ECH phase, R0 = 3.67m.
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One point with DKES (squares) takes about 1 hour of CPU time.

One point with the code that José Luis Velasco is building (points
joined by solid lines) takes about 1 minute of CPU time.
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Conclusions and further work

We have started a line of research that allows to deal in a systematic
way with stellarators close to omnigeneity.

In this work we have focused on neoclassical transport for collision-
alities below the 1/ν regime, and we have found expressions for the
fluxes in the

√
ν and the superbanana-plateau regimes.

A linear equation that determines the component of the electrostatic
potential that is non-constant on the flux surface can be deduced (not
addressed in this talk).

Concepts and results of this work can be used to build fast neoclassical
codes, that might be included in optimization loops.
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