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Overview

1. Background/motivation - why achieving dynamo in the laboratory matters

2. Small-scale turbulent dynamo on the OMEGA laser facility

• Set-up and diagnostics

• Simulation and plasma characterisation

• Results – near equipartition of  magnetic and kinetic energy

3. Proton radiography of  stochastic magnetic fields

• Kinetic theory of  imaging beam

• Extracting magnetic field statistics from flux images

• Particle diffusion due to small-scale fields
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Background

• Basic question: how did ICM come to be universally magnetised?

• Typical seed mechanisms inadequate

• Explanation: small-scale turbulent kinematic dynamo

• MHD dynamo (mostly) understood theoretically

• Stretching of  field lines at resistive scale

• Process well-demonstrated in simulations – need 

• Understanding of  plasma dynamo less developed – but lots of  

recent progress!

• Turbulent dynamo mechanism never seen in the laboratory due to 

insufficient        

• Laboratory experiments allow for confirmation of  process 

in more complicated physical situations
[3] Simulated small-scale dynamo: Top:

velocity; Bottom: magnetic field strength
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OMEGA laser facility
• Located at Laboratory for Laser Energetics (LLE), Rochester, US – built 1995

• 60 beams lines, 40 kJ maximum laser energy (highest energy/pulse until NIF)

Source: http://www.lle.rochester.edu/omega_facility/omega/
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Experimental set-up

Schematic of experimental set-up, featuring pulse shape (top left), foil design

(bottom right) and partial diagnostic layout, along with image of actual target

(bottom left)

• Turbulent region created by 

colliding unstable laser-driven 

plasma jets

• Two pulse shapes

• 5 ns drive gives higher flow 

velocities (so greater        )  

• Diagnostics

• Thomson scattering

• X-ray framing camera

• Proton radiography

• Polarimetry
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Thomson scattering

• Electron temperature, bulk flow, and ion 

temperature/turbulent motion measurement in 

50 µm3 region

• Typical electron temperature (for 5 ns drive)

• Ion temperature taken to be similar

• Further broadening attributed to turbulent 

small-scale motions on scale of  TS volume 

• Bulk motions (combined with large scale 

turbulent motions) found to have

Top: Thomson scattering lineout with instrument

function fit, 32 ns; bottom: Electron temperature (red),

jet mean velocity (blue) and turbulent velocity (green).
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X-ray emission

• Self-emission measured by X-ray framing camera, 

with pinhole resolution 

• Assuming an optically thin plasma, can relate 

relative emission intensity fluctuations to relative 

density fluctuations in interaction region (Churazov

et. al.), and hence find latter power spectrum

• Results show power spectrum consistent with 

Kolmogorov scaling

• In subsonic turbulence, typically expect 

spectrum of  density and velocity fluctuations 

to have same scaling 

• Conclusion: interaction region seems turbulent (or 

at least manifests stochastic motions)
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Proton radiography
• Proton beam (created by capsule implosion – two energies) used to image magnetic fields

• Early time radiographs show fields too weak to create large flux variations

• Later time show strong non-linear features (enhanced in 5 ns shots)
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Polarimetry

• Polarisation of  Thomson scattering beam used to 

measure Faraday rotation effects

• Initial rotation taken from calibration shot

• Typical rotation found to be

• For magnetic correlation scale     , rotation related 

to magnetic field strength by 

• Scaling dependence on      of  proton flux magnitude has different scaling to polarimetry

• This allows for self-consistent solution for              and       (assuming isotropy) to give  
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Flash simulations
• Two-fluid laser-plasma simulation code used to 

complement experiment

• Comparative diagnostic outputs generated 

• Thomson scattering results for electron 

temperature and velocities from simulation and 

experiment consistent

• Code predicts               - justification for 

previous assumption

• Simulation used to give estimate of  absolute 

density                              (not measured 

experimentally)

• Initial (Biermann battery) seed fields found to 

have                          : shock compression and 

Biermann battery field generation in interaction 

region not sufficient to explain field growth
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Plasma parameterisation

• Adopting experiment plasma parameters as

we obtain estimates of theoretical plasma parameters

shown opposite.

• Plasma is essentially well described as MHD,

subsonic

• Prandtl number , though sensitive to ion

temperature assumption

• Ions seem un-magnetised, so resulting plasma

closer to typical simulations than ICM
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Conclusions and next steps

1. Platform seems to produce MHD-type, ‘super-critical’         plasma undergoing 

stochastic motions 

2. Significant field amplification (with stochastic structure) generated by interaction of  jets

• Dynamo mechanism likely candidate

• Magnetic/kinetic field energy ratio approaching unity –

• Second round of  experiments due next week

• Pinhole set-up to be used as alternative (hopefully more quantitative) method for 

measuring particle deflections

• Increase time-range of  shots 

• New grid pattern to create larger, more symmetric interaction region
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Proton radiography – improved analysis? 

• Estimating magnetic fields correctly crucial to success of  

experiment – yet techniques described above qualitative. 

• Question: can radiographs be analysed quantitatively?

• Radiographic analysis often done by post-processing 

simulated EM fields

• Good approach for simple configurations – but less 

effective for stochastic fields

• Example: FLASH magnetic fields generate radiographic 

image which seems quite different from actual radiograph

• Alternative approach: use asymptotic analysis to derive 

expression for flux in terms of  magnetic field

• ‘Small/moderate’ magnetic field gradients – RMS 

values and spectra extractable. 

• ‘Large’ gradients – spatial information lost, field 

strength statistics still accessible.
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Diagnostic set-up

Kugland et. al. (2012)

• Beam typically generated by TNSA (thermal 

spectrum of  energies) or capsule implosion 

(two discrete energies)

• Usual set-up is done in paraxial limit 

• Typical deflections

• Fast speed of  protons greatly simplifies 

physics governing beam 

• Self-interactions, kinetic instabilities, 

collisional effects (basically) negligible

• Electric forces smaller than magnetic forces
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Proton beam evolution equation

• Beam obeys governing Vlasov equation

• Exact solution

where characteristic ray mapping given by inverting particle trajectories

• Since deflections             , try naïve asymptotic solution                     , with

• Generally helpful for simple fields (with some complications!); leads to scaling

for DD                protons, 1mm plasma
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Asymptotic approximations to deflection field

• Total deflection experienced by a particle with initial position         becomes

• Deflection ‘field’ irrotational in sense that

and so can be written as the gradient of  a potential

• Further asymptotic approximations possible – for example, expand around initial position
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Propagation from plasma to imaging screen

• Beyond magnetic field configuration, particles undergo free-streaming: only real parts of  

phase space coordinates altered

• The magnetic fields induce a coordinate distortion to an initial regular grid carrying the flux 

distribution. If               , then in paraxial limit, perpendicular mapping satisfies

• For a distribution function arising from a point source, the flux becomes
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Numerical example

• Test theory by comparing results of  test  

particles numerically propagated 

through field configuration, field 

strength

• Good qualitative (and quantitative) 

agreement
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Smearing
• By choosing a different initial distribution function, the 

effects of  smearing can be included in kinetic model.

• Smeared flux related to point-source flux by 

where the point spread function 

is related to the initial spread in perpendicular velocities

• Again well matched by numerical experiments.

• If  smearing effect small, original image recoverable with 

deconvolution algorithm – though such analysis prone to 

instabilities
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• Meaning of  flux map dependent on contrast parameter

for       the stochastic field correlation scale.

-

- ‘non-linear injective regime’ – coordinate distortions, but no multi-valuedness

- ‘multivalued regime’ – coordinate distortions dominate flux morphology

-

‘linear regime’, where relative flux is proportional to the path-integrated   -component 

of  current:

Physical interpretation of  radiographic images

‘high contrast’: spatial information about structure size lost, image displays PDF of  

deflection field  



Atomic and Laser Physics

Numerical example

• Flux generated from stochastic Gaussian field with Kolmogorov power law for various contrasts
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Stochastic fields – theoretical background

• Heuristically, expect particle undergoing motion through fields to experience a velocity 

deflection accumulating as a random walk (provided small angle deflections)

• The contrast then scales as

• Thus for a fixed field strength, as the correlation scale of  a field decreases the typical 

deflection size is reduced, but contrasts increase.

• At very small scales, local flux behaviour determined by deflection magnitude – well 

modelled by a diffusive picture (see later).

• Scalings supported by analytical correlation analysis, and numerical simulations. 
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Spectral reconstruction

• In the linear regime, the spectra of  

the deflection field and the flux 

respectively can be linked to that of  

magnetic fields:

• Numerical tests on field with power 

law spectrum (index -2), and field 

strength                           , 

demonstrate feasibility of  method.
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Spectral reconstruction and non-linear effects 

• Problem: for highest contrasts, 

optical distortion of  flux affects 

spectral shape. 

• Deflection field is (asymptotically) 

linear in the magnetic field, so is not 

affected by this.  

• Q: can the deflection field be 

recovered from the flux image 

(‘reconstruction’)

• A: yes – but only if  the 

coordinate mapping is injective 

• Monge-Ampère equation (opposite) 

has unique convex solution with 

Neumann BCs.



Atomic and Laser Physics

Non-linear flux spectral distortion
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Non-linear reconstruction



Atomic and Laser Physics

Non-linear reconstruction on multi-valued images 

• If  an image has multi-valued flux regions, the algorithm will behave as if  the flux is single-

valued, so the solution will be invalid.

• Can be shown analytically (Gangbo et. al.) that solution of  Monge-Ampere equation is always a 

lower bound on the deflection field RMS (as illustrated numerically).
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Small-scale fields – diffusive picture
• There has been extensive work done modelling the evolution of  a beam of  particles through 

stochastic magnetic fields diffusively. 

• Bykov and Toptigin (1966) derive a governing equation for the ensemble averaged 

distribution function of  non-interacting, unmagnetised test particles using quasi-linear 

theory 

• The result of  such an attempt is typically a diffusion tensor, the form of  which being 

dependent on both properties of  the beam and the field. 

• For homogenous, isotropic stochastic magnetic fields satisfying               (and using a typical 

beam), can deduce diffusion equation using QL theory on Vlasov equation (assuming no 

collective effects) for particle distribution       (ensemble averaged)  

for diffusion coefficient and typical diffusion velocity
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Summary and next steps

1. Physical interpretation of  proton images arising from magnetic fields depends on contrast 

parameter   

• Small     - flux variations describe current fluctuations

• Moderate     - non-linear coordinate distortion. 

• Large     - probability density function of  field strengths.

2. Decreasing correlation length of  stochastic field decreases deflections, increases contrasts   

• Shift from regime in which spatial statistics of  fields reflected in flux/deflections into 

diffusive picture. 

3. For small to moderate    , spectrum and mean field strengths extractable. 

• Use of  reconstruction techniques avoids non-linear distortion.

• Still work in progress: application to actual radiographs

• Reconstruction method non-local, so sensitive to boundary conditions


