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Overview of alpha particle physics

Motivation

The fate of alpha particles is critical to a burning reactor

Fast ion destabilize Alfvén eigenmodes

Damage to wall if energetic particles escape

Possible sources of alpha particle transport:

Neoclassical ripple loss
Coherent modes (TAEs, sawteeth, etc.)
Anomalous transport from turbulence
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Overview of alpha particle physics

What has been done?

Estrada-Mila, Candy, Waltz (2006): Performed transport calculations
with an “equivalent Maxwellian”

Angioni, Peeters (2008): Developed a quasilinear model for alpha
transport

Hauff, Pueschel, Dannert, Jenko (2009): Scalings of turbulent
transport coefficients as a function of energy

Albergante, et al. (2009): Efficient coefficient-based model for
transport of Maxwellian alphas.

Waltz, Bass, Staebler (2013): Quasilinear model allowing radial
transport to compete with collisional slowing-down.

Bass and Waltz (2014): Stiff transport model for TAEs along with
Angioni model for anomalous transport
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Overview of alpha particle physics

There is an analytic approximation to the alpha particle
slowing-down distribution

If alpha particle transport is weak compared to collisions:

∂F0α

∂t
= C [F0α(v)] +

σ

4πv2
α

δ(v − vα)

We can obtain the slowing-down distribution as a steady-state by
approximating the collision operator valid for vti � v � vte:

Fs(v) = A
nα

v3
c + v3

for v < vα

This does not capture the Maxwellianization and buildup of He ash
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Overview of alpha particle physics

Anatomy of the alpha particle distribution

Different physical processes will be dominant at different energy scales:

Maxwellian 
“Ash”

Collisional drag

Source

Transport?

(Ions) (Electrons)
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Overview of alpha particle physics

The radial flux of alpha particles is a strong function of
energy
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Γp =

∫
Γ(E) d3v



Overview of alpha particle physics

Transport can compete with collisional slowing-down at
moderate energies
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Define characteristic times such that:

C[F0] ∼ F0

τc(E)

∂

∂r
Γ(E) ∼ F0

τΓ(E)

When τΓ < τc, transport is dominant
over collisions and the Gaffey
slowing-down distribution is invalid
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Low-collisionality gyrokinetics

Outline

Wilkie (Maryland) Coupled transport 24 July 2015 9 / 28



Low-collisionality gyrokinetics

Low-collisionality ordering of gyrokinetics

Gyrokinetic equation (electrostatic):

∂hs
∂t

+v‖b · ∇hs + vds · ∇hs +
c

B
b× 〈φ〉R · ∇hs +�������

q
∂hs
∂E

∂ 〈φ〉R
∂t

−�
��C[hs]

= −q∂F0s

∂E

∂ 〈φ〉R
∂t

− c

B
(b× 〈φ〉R · ∇ψ)

∂F0s

∂ψ

Caveats:

Ignoring the parallel nonlinearity out of convenience: would require a
factor O [1/ρ∗] more energy grid points

For the moment, ignoring the collision operator because H-theorem is
questionable for non-Maxwellian equilibria. Trace approximation
makes this okay?
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Low-collisionality gyrokinetics

Low-collisionality ordering of gyrokinetics

Transport equation:

1

V ′
∂

∂t

(
V ′F0

)
+

1

V ′
∂

∂ψ

(
V ′Γψ

)
+

1√
E

∂

∂E

(√
EΓE

)
= 〈C [F0] + S〉ψ .

Γψ and ΓE are the flux in radius and energy respectively. Both are
functions of energy.

Collision operator appears on the transport scale

Solve for full F0 instead of n0, T0
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Low-collisionality gyrokinetics

Coupled GK-transport workflow

Maxwellian, or other analytic distribution:

Turbulent dynamics
(GS2, GENE, GYRO, etc.)

Turbulent dynamics
(GS2, GENE, GYRO, etc.)

Equilibrium evolution
(Trinity, TGYRO)

Equilibrium evolution
(Trinity, TGYRO)

n(), u(), T()

,  Q
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Candy, et al. PoP (2009)
Barnes, et al. PoP (2010)
Parra, Barnes. PPCF (2015)



Low-collisionality gyrokinetics

Coupled GK-transport workflow

Velocity distribution not known a priori:

Turbulent dynamics
(GS2, GENE, GYRO, etc.)

Turbulent dynamics
(GS2, GENE, GYRO, etc.)

Equilibrium evolution
(?)

Equilibrium evolution
(?)

F (E, )
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Trace transport

Outline
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Trace transport

Alpha particles are trace and do not affect the linear or
nonlinear electrostatic physics at realistic concentrations

Cyclone base case, electrostatic.

0.05 0.10 0.15 0.20 0.25

nα /ne

0.00

0.05

0.10

0.15

0.20

γ
R
/v

ti

Slowing-down

Equiv. Maxw.

Diluted ions

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

kyρi

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

γ
R
/v

ti

nα =20% ne

Slowing-down

Equiv. Maxw.

Diluted ions

0 50 100 150 200 250 300 350 400

t vti/R

10
-2

10
-1

10
0

10
1

Q
to
t
/
Q

G
B

(a)

nα =0.002ne

nα =0.01ne

nα =0.1ne

Wilkie (Maryland) Coupled transport 24 July 2015 15 / 28

Tardini, et al. NF (2007)
Holland, et al. PoP (2011)
Wilkie, et al, JPP (2015)



Trace transport

Method to calculate flux of an arbitrary equilibrium

The (collisionless) GK equation can be written schematically as:

L [h] = bv
∂F0

∂v
+ bψ

∂F0

∂ψ

where bv, bψ, and L depend on the particular problem, but not on F0.
So we can write the radial flux as:

Γ(E) = −Dv
∂F0

∂v
−Dψ

∂F0

∂ψ

1 Run a GK simulation with two additional species with the desired
charge and mass, but at different temperatures or radial gradients

2 Use Γ(E) for each of these to calculate Dv and Dψ as functions of
energy

3 Plug in any desired F0(E,ψ), iterate with transport solver to find
profile
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Trace transport

Two ways to obtain diffusion coefficients

1 Run with multiple species with different gradients

Easier to implement, more computationally expensive

2 Obtain directly from φ (r, t)

Requires solving the GK equation, one energy at a time, with φ given

3 Analytic estimate?

Γψ =
∂F0

∂ψ

〈∑
σ‖

∫
L−1

[
∂ 〈φ〉R
∂y

]
c2

B2

∂ 〈φ〉R
∂y

πBdλ√
1− λB

〉
t,ψ

∂ 〈φ〉R
∂y

≡ b× 〈φ〉R · ∇ψ

L ≡ ∂

∂t
+
(
v‖b + vds +

c

B
b× 〈φ〉R

)
· ∇
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Trace transport

Proof of principle: Reconstruct non-Maxwellian flux in ITG
turbulence from Maxwellian

Quasilinear:
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Trace transport

New tool in development to calculate coupled
radius-energy transport of trace energetic particles

Written in

T3CORE

Trace Turbulent Transport,
COupled in Radius and Energy

Solves for the steady-state or time-dependent F0(v, r)

Utilizes the trace approximation to determine turbulent transport
coefficients

Runs on a laptop once the “seed” nonlinear simulations are performed
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