GryfX: A GPU Gyrofluid Turbulence Code with Kinetic Zonal Flows and Advanced Nonlinear Closures

N. Mandell, B. Dorland

Vienna Kinetics Workshop
July 21, 2015
Tokamak turbulence can be described by the gyrokinetic approximation:

\[
\frac{\omega}{\Omega} \sim \frac{\rho_i}{L_{eq}} \sim k_\parallel \rho_i \sim \frac{e\Phi}{T_e} \sim \frac{\delta B}{B_0} \sim O(\epsilon); \quad k_\perp \rho_i \sim O(1)
\]

Gyrofluid model derived by taking moments of toroidal gyrokinetic equation (Beer and Hammett, 1996)

\[
\frac{\partial}{\partial t} F + \nabla \cdot \left[F \left(v_\parallel \hat{b} + v_E + v_d \right) \right] + \frac{\partial}{\partial v_\parallel} \left[F \left(-\frac{e}{m} \hat{b} \cdot \nabla J_0 \Phi - \mu \hat{b} \cdot \nabla B + v_\parallel (\hat{b} \cdot \nabla \hat{b}) \cdot v_E \right) \right] = C(F)
\]

Closures chosen to capture important kinetic effects, most notably Landau damping, toroidal \(\nabla B \) and curvature drifts and associated phase mixing, and toroidal finite Larmor radius (FLR) effects
Moment definitions and normalizations

\[\delta n = \int \delta f \, d^3 v \]
\[\delta p_\parallel = m \int \delta f \, v_\parallel^2 \, d^3 v \]
\[\delta q_\parallel = -3 m v_t^2 n_0 \delta u_\parallel + m \int \delta f \, v_\parallel^3 \, d^3 v \]
\[\delta r_{\parallel,\parallel} = m \int \delta f \, v_\parallel^4 \, d^3 v \]
\[\delta r_{\perp,\parallel} = (m/4) \int \delta f \, v_\perp^4 \, d^3 v \]
\[\delta s_{\parallel,\parallel} = -15 m v_t^4 n_0 \delta u_\parallel + m \int \delta f \, v_\parallel^5 \, d^3 v \]

\[\delta p_\perp = (m/2) \int \delta f \, v_\perp^2 \, d^3 v \]
\[\delta q_\perp = -m v_t^2 n_0 \delta u_\parallel + (m/2) \int \delta f \, v_\parallel v_\perp \, d^3 v \]
\[\delta r_{\parallel,\perp} = (m/2) \int \delta f \, v_\parallel^2 v_\perp \, d^3 v \]
\[\delta s_{\parallel,\perp} = -2 m v_t^2 n_0 \delta u_\parallel + (m/4) \int \delta f \, v_\parallel v_\perp^2 \, d^3 v \]
\[\delta s_{\perp,\perp} = -3 m v_t^4 n_0 \delta u_\parallel + (m/2) \int \delta f \, v_\parallel^3 v_\perp^2 \, d^3 v \]

\[\left(\frac{\delta n}{n_0}, \frac{\delta u_\parallel}{v_t}, \frac{\delta T_\parallel}{T_0}, \frac{\delta T_\perp}{T_0}, \frac{\delta q_\parallel}{n_0 T_0 v_t}, \frac{\delta q_\perp}{n_0 T_0 v_t}, \frac{e \delta \Phi}{T_0} \right) \]
\[= \frac{\rho_i}{a} \left(\bar{n}, \bar{u}_\parallel, \bar{T}_\parallel, \bar{T}_\perp, \bar{q}_\parallel, \bar{q}_\perp, \bar{\Phi} \right) \]

where \(v_t = \sqrt{T_0/m} \)
Equations: 6 moment Gyrofluid Model

\[
\begin{align*}
\frac{\partial n}{\partial t} + v_\psi \cdot \nabla n + \left[\frac{1}{2} \hat{\nabla}^2 v_\psi \right] \cdot \nabla T_\perp + B \nabla_\parallel \frac{u_\parallel}{B} &- \left(f' + \frac{t'}{2} \hat{\nabla}_\perp^2 \right) i\omega_\star \Psi \\
&+ \left(2 + \frac{1}{2} \hat{\nabla}_\perp^2 \right) i\omega_d \Psi + i\omega_d \left(T_\parallel + T_\perp + 2n \right) = 0
\end{align*}
\]

\[
\begin{align*}
\frac{\partial u_\parallel}{\partial t} + v_\psi \cdot \nabla u_\parallel + \left[\frac{1}{2} \hat{\nabla}^2 v_\psi \right] \cdot \nabla q_\perp + B \nabla_\parallel \frac{T_\parallel}{B} + B \nabla_\parallel \frac{n}{B} + \nabla_\parallel \Psi \\
&+ \left(T_\perp + n + \frac{1}{2} \hat{\nabla}_\perp^2 \Psi \right) \nabla_\parallel \ln B + i\omega_d \left(q_\parallel + q_\perp + 4u_\parallel \right) = 0
\end{align*}
\]

\[
\begin{align*}
\frac{\partial T_\parallel}{\partial t} + v_\psi \cdot \nabla T_\parallel + B \nabla_\parallel \frac{q_\parallel + 2u_\parallel}{B} &+ 2 \left(q_\perp + u_\parallel \right) \nabla_\parallel \ln B - t' i\omega_\star \Psi + 2i\omega_d \Psi \\
&+ i\omega_d \left(6 T_\parallel + 2n \right) + 2 |\omega_d| \left(\nu_1 T_\parallel + \nu_2 T_\perp \right) = -\frac{2}{3} \nu_{ii} \left(T_\parallel - T_\perp \right)
\end{align*}
\]
\[\frac{\partial T_\perp}{\partial t} + \mathbf{v}_\Psi \cdot \nabla T_\perp + \left[\frac{1}{2} \hat{\nabla}_\perp^2 \mathbf{v}_\Psi \right] \cdot \nabla n + \left[\hat{\nabla}_\perp^2 \mathbf{v}_\Psi \right] \cdot \nabla T_\perp - B \nabla_\parallel \frac{u_\parallel}{B} \\
+ B^2 \nabla_\parallel \frac{q_\perp + u_\parallel}{B^2} - \left[\frac{f'}{2} \hat{\nabla}_\perp^2 + t' \left(1 + \hat{\nabla}_\perp^2 \right) \right] i\omega_\star \psi + \left(1 + \frac{1}{2} \hat{\nabla}_\perp^2 + \hat{\nabla}_\perp^2 \right) i\omega_d \psi \\
+ i\omega_d \left(4 T_\perp + n \right) + 2 |\omega_d| \left(\nu_3 T_\parallel + \nu_4 T_\perp \right) = \frac{1}{3} \nu_{ii} \left(T_\parallel - T_\perp \right) \\
\frac{\partial q_\parallel}{\partial t} + \mathbf{v}_\Psi \cdot \nabla q_\parallel + \left(3 + \beta_\parallel \right) \nabla_\parallel T_\parallel + \sqrt{2} D_\parallel \left| k_\parallel \right| q_\parallel + i\omega_d \left(-3 q_\parallel - 3 q_\perp + 6 u_\parallel \right) \\
+ |\omega_d| \left(\nu_5 u_\parallel + \nu_6 q_\parallel + \nu_7 q_\perp \right) = -\nu_{ii} q_\parallel \\
\frac{\partial q_\perp}{\partial t} + \mathbf{v}_\Psi \cdot \nabla q_\perp + \left[\frac{1}{2} \hat{\nabla}_\perp^2 \mathbf{v}_\Psi \right] \cdot \nabla u_\parallel + \left[\hat{\nabla}_\perp^2 \mathbf{v}_\Psi \right] \cdot \nabla q_\perp + \nabla_\parallel \left(T_\perp + \frac{1}{2} \hat{\nabla}_\perp^2 \psi \right) \\
+ \sqrt{2} D_\perp \left| k_\parallel \right| q_\perp + \left(T_\perp - T_\parallel + \hat{\nabla}_\perp^2 \psi - \frac{1}{2} \hat{\nabla}_\perp^2 \psi \right) \nabla_\parallel \ln B \\
+ i\omega_d \left(-q_\parallel - q_\perp + u_\parallel \right) + |\omega_d| \left(\nu_8 u_\parallel + \nu_9 q_\parallel + \nu_{10} q_\perp \right) = -\nu_{ii} q_\perp \]
Quasineutrality and definitions

\[n_e = \frac{n}{1 + b/2} - \frac{bT_\perp}{2(1 + b/2)^2} + (\Gamma_0 - 1)\Phi \]

When electrons are assumed to adiabatic, which is the case for all results presented here, we have

\[n_e = \frac{T_{i0}}{T_{e0}}(\Phi - \langle \Phi \rangle) \]

\[b = k_\perp^2 \rho_i^2, \quad \Psi = \Gamma_0^{1/2}(b)\Phi, \quad v_\Psi = \frac{c}{B} \hat{b} \times \Psi, \quad \frac{1}{2} \hat{\nabla}_\perp^2 \Psi = b \frac{\partial \Gamma_0^{1/2}}{\partial b} \Phi, \]

\[\hat{\nabla}_\perp^2 \Psi = b \frac{\partial^2}{\partial b^2} (b\Gamma_0^{1/2})\Phi, \quad \nabla_\parallel = \hat{b} \cdot \nabla, \quad i\omega_* = \frac{-cT_0}{eBn_0} \nabla n_0 \cdot \hat{b} \times \nabla, \]

\[i\omega_d = \frac{cT_0}{eB^2} \hat{b} \times \nabla B \cdot \nabla, \quad f' = \frac{a}{L_N}, \quad t' = \frac{a}{L_T} \]
Need to improve original GF model

- Original toroidal gyrofluid closures missing key physics: linearly undamped zonal flows and nonlinear FLR phase mixing (NLPM)
- Attempts made to correctly model zonal flows by modifying Landau damping closures (Beer, 1998)
- NLPM included in earlier slab-geometry gyrofluid model (Dorland, 1993), but not thought to be as important in toroidal geometry

Original gyrofluid model does not allow Rosenbluth-Hinton residual flow
Attempted Zonal Flow Closures (Varenna closure)

\[\sqrt{2}D_{||} |k_{||}| q_{||} \to \sqrt{2}D_{||} |k_{||}| (q_{||} - q_{||}^{(0)}) \]

\[\sqrt{2}D_{\perp} |k_{||}| q_{\perp} \to \sqrt{2}D_{\perp} |k_{||}| (q_{\perp} - q_{\perp}^{(0)}) \]

\[q_{||}^{(0)} = 3ik_{r}\rho_{i}\frac{qB_{0}}{\varepsilon B} T_{||}, \quad q_{\perp}^{(0)} = ik_{r}\rho_{i}\frac{qB_{0}}{\varepsilon B} T_{\perp} \]

- GF modified by Beer et al to allow linearly undamped R-H residual flows; published in Varenna Proceedings, 1998
- \(q_{||}^{(0)} \) and \(q_{\perp}^{(0)} \) are Pfirsch-Schluter heat flows
- New model damps to non-zero equilibrium solution

Problems with Varenna zonal flow closures

- Agreement with Rosenbluth-Hinton theory only good for a small range of low k_x
- Residual still has some damping even without collisions
- Collisional damping of zonal flows not modeled well
- For more exotic geometries, theory of residuals becomes very complicated (Catto & Xiao)
Even better: Fully kinetic zonal flows

- Evolve $k_y = 0$ modes with gyrokinetic model (GS2), and all other modes with original gyrofluid model \rightarrow Spectral representation makes this trivial for linear terms
- Essentially running GS2 with $N_y=1$ linearly with nonlinear source term from GryfX
- All nonlinear terms calculated in gyrofluid model; in gyrokinetic equation, N_{gk} must be reconstructed from the $k_y = 0$ component of the nonlinear terms of the gyrofluid moments:

$$\hat{N}_{gk} = N_n + \frac{v_{\|}}{v_t} N_{u_{\|}} + \frac{1}{2} \left(\frac{v_{\|}^2}{v_t^2} - 1 \right) N_{T_{\|}} + \frac{1}{2} \left(\frac{v_{\perp}^2}{v_t^2} - 2 \right) N_{T_{\perp}}$$

$$+ \frac{1}{2} \left(\frac{v_{\|}^3}{3v_t^3} - \frac{v_{\|}}{v_t} \right) N_{q_{\|}} + \frac{v_{\|}}{v_t} \left(\frac{v_{\perp}^2}{2v_t^2} - 1 \right) N_{q_{\perp}}$$

- Consistent with moment definitions, such that $N_n = \int \hat{N}_{gk} \ d^3v$, $N_{u_{\|}} = \int \hat{N}_{gk} \ v_{\|} \ d^3v$, etc
Hybrid gyrofluid-gyrokinetic algorithm

GPU (GF)

- calculate $N_{m_i}[t]_{all \ k}$
- calculate $L_{m_i}[t]_{k_y \neq 0}$
- estimate $m_i(t + \Delta t/2)_{k_y \neq 0}$, $\Phi(t + \Delta t/2)_{k_y \neq 0}$

CPU (GK)

- advance $g_{k_y=0}$, $\Phi_{k_y=0}$
- $t \rightarrow t + \Delta t/2$
- calculate $m_i(t + \Delta t/2)_{k_y=0}$
- copy CPU→GPU

- copy GPU→CPU

- calculate $N_{m_i}[t+\Delta t/2]_{all \ k}$
- calculate $L_{m_i}[t+\Delta t/2]_{k_y \neq 0}$
- calculate $m_i(t + \Delta t)_{k_y \neq 0}$, $\Phi(t + \Delta t)_{k_y \neq 0}$

- $m_i(t + \Delta t)_{k_y=0}$, $\Phi(t + \Delta t)_{k_y=0}$

- $t + \Delta t/2 \rightarrow t + \Delta t$

- calculate $m_i(t + \Delta t)_{k_y=0}$

- copy CPU→GPU

- copy GPU→CPU

- $m_i(t + \Delta t)_{k_y=0}$, $\Phi(t + \Delta t)_{k_y=0}$
ZF velocity space resolution requirements/questions

- Preliminary simulation results with low velocity space resolution (ngauss=3, negrid=6) give same heat fluxes as higher resolution (ngauss=8, negrid=16)
- ntheta=32 so really just reducing v-space resolution for passing particles
- How much (non-trapped) velocity space resolution is necessary to capture zonal flow dynamics?
- What is the velocity space structure of the zonal flows in a full GS2 simulation?
- We only have 6 gyrofluid moments (∼ 6 grid points) for non-zonal modes... would having too much velocity space resolution for zonal modes ever become problematic/overdetermined?
Nonlinear FLR Phase Mixing

- Spread in gyro-averaged $\mathbf{E} \times \mathbf{B}$ velocities leads to phase mixing in perpendicular direction (analogous to Landau damping in parallel direction)
- Entropy cascade in k_\perp and ν_\perp
- Damping proportional to $k_\perp^2 |\mathbf{v}_E \cdot \mathbf{k}_\perp|$
Consider a static zonal flow potential $\Phi = \Phi_{ZF}(x)$ in sheared slab geometry.

Neglecting equilibrium and parallel gradients, the GK equation is

$$\frac{\partial F_1}{\partial t} + J_0 \left(\frac{k_x v_\perp}{\Omega} \right) v_E \frac{\partial F_1}{\partial y} = 0$$

Consider initial perturbation $F_1(t = 0) = e^{ik_y y} F_M(v)$, so the solution is

$$F_1(t) = F_M e^{ik_y [y - J_0 (k_x v_\perp / \Omega) v_E t]}$$
Expanding J_0 for small k_\perp, we can integrate analytically to see that all moments of F_1 decay in time:

$$n_{1\text{kin}}(t) = \int d^3v F_1 \simeq n_0 e^{ik_y(y-v_E t)} \frac{1}{1 - ik_y bv_E t/2}$$

$$p_{\perp\text{kin}}(t) = \int d^3v \frac{mv_\perp^2}{2n_0 v_t^2} F_1 \simeq n_0 e^{ik_y(y-v_E t)} \frac{1}{(1 - ik_y bv_E t/2)^2}$$

$$T_{\perp\text{kin}}(t) = p_{\perp\text{kin}} - n_{\text{kin}} \simeq n_0 e^{ik_y(y-v_E t)} \frac{ik_y bv_E t/2}{(1 - ik_y bv_E t/2)^2}$$

$$r_{\perp,\perp\text{kin}}(t) = \int d^3v \frac{mv_\perp^2}{4n_0 v_t^4} F_1 \simeq n_0 e^{ik_y(y-v_E t)} \frac{2}{(1 - ik_y bv_E t/2)^3}$$

where here $b = k^2 x v_t^2 / \Omega^2$.
1-D model of NLPM

- Working backwards, we find that these expressions are exact solutions of the following set of equations:

\[
\frac{\partial n}{\partial t} + \left(1 - \frac{b}{2}\right) v_E \cdot \nabla n - \frac{b}{2} v_E \cdot \nabla T_\perp = 0
\]

\[
\frac{\partial T_\perp}{\partial t} + \left(1 - \frac{3b}{2}\right) v_E \cdot \nabla T_\perp - \frac{b}{2} v_E \cdot \nabla n
- \frac{b}{2} v_E \cdot \nabla (r_{\perp,\perp} - 2n - 4T_\perp) = 0
\]

- Match low-\(b\) limit of original gyrofluid nonlinear terms with exception of last term
- For this test problem, an exact solution for \(r_{\perp,\perp}\) can be expressed as

\[
r_{\perp,\perp} = \frac{4(n + T_\perp)}{1 - i k_y b v_E t/2} - \frac{2n}{(1 - i k_y b v_E t/2)^2}
\]

- Can extend to higher \(b\) by taking \((1 - b/2)v_E \rightarrow v_\Psi\), \((-b/2)v_E \rightarrow \frac{1}{2} \hat{\nabla}_\perp^2 v_\Psi\)
We want to recover this damping behavior with our closures, so we break the $r_{\perp,\perp}$ closure into Maxwellian and dissipative pieces

$$r_{\perp,\perp} = 2n + 4T_{\perp} + \frac{\left|\left[\frac{1}{2} \hat{\nabla}^2_{\perp} v_{\psi}\right] \cdot \nabla\right|}{\left[\frac{1}{2} \hat{\nabla}^2_{\perp} v_{\psi}\right] \cdot \nabla} \left[\mu_1(n + T_{\perp}) + \mu_2 n\right]$$

The closure coefficients contain a dissipative and non-dissipative piece, to try to capture the phase shift

$$\mu = \mu_r + \mu_i \frac{\left|\left[\frac{1}{2} \hat{\nabla}^2_{\perp} v_{\psi}\right] \cdot \nabla\right|}{\left[\frac{1}{2} \hat{\nabla}^2_{\perp} v_{\psi}\right] \cdot \nabla} = (\mu_r, \mu_i)$$

Find μ’s by minimizing difference between fluid and kinetic density responses for $b = 0.1$
Good agreement for density response for $b = 0.1$.

GryfX in yellow, Kinetic in blue
1-D model of NLPM

- Not as good for larger b... here $b = 0.5$.

GryfX in yellow, Kinetic in blue
Extending NLPM model to 3-D

In general 3-D geometry, we currently approximate

\[|\mathbf{v} \cdot \nabla| M \simeq D_{PM} \left(|v_x| \left| \frac{\partial}{\partial x} \right| M + |v_y| \left| \frac{\partial}{\partial y} \right| M \right) \]

This misses interference terms in the original absolute value

Adjustable scalar parameter \(D_{PM} \) included to account for this, with \(D_{PM} \lesssim 1 \)

Is there a better way to evaluate these terms? Greg suggested

\[|\mathbf{v} \cdot \nabla| M \simeq |k_x| (v_x M - (v_x M)_0) + |k_y| (v_y M - (v_y M)_0) \]

where in equilibrium, \(\frac{\partial}{\partial x} (v_x M)_0 = -\frac{\partial}{\partial y} (v_y M)_0 \), so that \(\nabla \cdot (\mathbf{v} M)_0 \rightarrow 0 \)
Nonlinear FLR Phase Mixing

Following a similar procedure for the remaining equations, the final gyrofluid nonlinear terms become

\[\mathcal{N}_n = \mathbf{v}_\psi \cdot \nabla n + \left[\frac{1}{2} \hat{\nabla}_\perp^2 \mathbf{v}_\psi \right] \cdot \nabla T_\perp \]

\[\mathcal{N}_{u\parallel} = \mathbf{v}_\psi \cdot \nabla u_\parallel + \left[\frac{1}{2} \hat{\nabla}_\perp^2 \mathbf{v}_\psi \right] \cdot \nabla q_\perp \]

\[\mathcal{N}_{T\parallel} = \mathbf{v}_\psi \cdot \nabla T_\parallel + \left| \left[\frac{1}{2} \hat{\nabla}_\perp^2 \mathbf{v}_\psi \right] \cdot \nabla \right| \mu_3 T_\parallel \]

\[\mathcal{N}_{T_\perp} = \mathbf{v}_\psi \cdot \nabla T_\perp + \left[\frac{1}{2} \hat{\nabla}_\perp^2 \mathbf{v}_\psi \right] \cdot \nabla n + \left[\hat{\nabla}_\perp^2 \mathbf{v}_\psi \right] \cdot \nabla T_\perp + \left| \left[\frac{1}{2} \hat{\nabla}_\perp^2 \mathbf{v}_\psi \right] \cdot \nabla \right| (\mu_1 T_\perp + (\mu_1 + \mu_2)n) \]

\[\mathcal{N}_{q\parallel} = \mathbf{v}_\psi \cdot \nabla q_\parallel + \left| \left[\frac{1}{2} \hat{\nabla}_\perp^2 \mathbf{v}_\psi \right] \cdot \nabla \right| \mu_3 q_\parallel \]

\[\mathcal{N}_{q_\perp} = \mathbf{v}_\psi \cdot \nabla q_\perp + \left[\frac{1}{2} \hat{\nabla}_\perp^2 \mathbf{v}_\psi \right] \cdot \nabla u_\parallel + \left[\hat{\nabla}_\perp^2 \mathbf{v}_\psi \right] \cdot \nabla q_\perp + \left| \left[\frac{1}{2} \hat{\nabla}_\perp^2 \mathbf{v}_\psi \right] \cdot \nabla \right| (\mu_1 q_\perp + (\mu_1 + \mu_2)u_\parallel) \]
Including NLPM and kinetic ZF brings GryfX heat flux predictions into good agreement with GK (GS2).

$D_{PM} = 0.35$ for all these simulations, ngauss=3, negrid=6.
NTP scan with NLPM

- Too much NLPM for $\epsilon = 0$, too little for $\epsilon = 0.4$
- D_{PM} could scale with ZF amplitude?
- Or find better way of evaluating $|v_E \cdot \nabla|$
Why do we need Gyrofluid Codes?

- Transport optimization: Use models coupled to TRINITY transport solver to evaluate transport properties of tokamak design configurations.

- To evaluate a configuration, need to vary $T(a), n(a), Q, S, \Pi$ independently. With 3 points in each direction, $3^5 = 243$ TRINITY runs required.

- Configuration parameters to vary include current profile, elongation, triangularity, β, etc. 128 configurations would be a start.

- A single TRINITY + GS2 simulation requires $O(1M)$ CPU hours, so entire scan would take $\sim 32,000 M$ CPU hours.

- Need to find multiple orders of magnitude of acceleration to make this project possible \rightarrow gyrofluid, GPUs

- Gyrofluid vs Gyrokinetic: 6 moments vs 256 grid points in velocity space $\sim 40X$ speedup
- Gyrofluid model requires less memory \rightarrow Able to fit efficiently on GPU
- GPU can achieve 20-30X speedup over CPU
- Total acceleration $> 1,200 X$
GryfX (non-hybrid) vs GS2 performance comparison

- Total speedup of more than 2,000X over GS2 for large grid
Cost of kinetic ZF minimized by GPU-CPU concurrency

- GF runs on GPU while GK runs on 16 CPUs: most supercomputer configurations allocate multiple CPUs for each GPU, so additional computation on CPU is essentially free
- Slows down by factor of 1-2, but this is an acceptable trade-off to get zonal flow physics right
- With ‘low’ velocity space resolution, converged nonlinear simulations in ∼ 1 hour (on 1 node = GPU + 16 procs)
TRINITY + GryfX on Titan, for example

For full design scan:

- GS2 + TRINITY \(\sim 32,000\) M CPU hours
- GryfX (hybrid) + TRINITY \(\sim 400\) M CPU hours
- GryfX (non-hybrid) + TRINITY \(\sim 25\) M CPU hours
 (*only if charged as 1 GPU-hour = 1 CPU-hour*)
- Titan (ORNL) has 18,688 nodes, each with 1 GPU and 16 CPUs \(\rightarrow 7M\) CPU hours per day \(\rightarrow 450K\) GryfX runs per day
- Full tokamak design study could be completed in a month: each node is always running its own GryfX calculation, so that hundreds of configurations can be evaluated simultaneously
- Would take years to do this with GS2
Future Work

- Keep improving gyrofluid NLPM closures
- Use kinetic zonal flows to guide improvements to gyrofluid zonal flow closures
- Implement gyrofluid electron equations (Beer or Snyder)
- Use GryfX for more efficient study of experimental results
- If accurate enough, GryfX can directly aid gyrokinetic simulations (resolution/convergence, pre-conditions, etc)
- DEMO design project: TRINITY + GryfX
 - Scan large parameter space efficiently
 - Find ideal design configurations