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Introduction to Gyrofluid (GF) Model

Tokamak turbulence can be described by the gyrokinetic approximation:

ω

Ω
∼ ρi

Leq
∼ k‖ρi ∼

eΦ

Te
∼ δB

B0
∼ O(ε); k⊥ρi ∼ O(1)

Gyrofluid model derived by taking moments of toroidal gyrokinetic
equation (Beer and Hammett, 1996)
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Closures chosen to capture important kinetic effects, most notably
Landau damping, toroidal ∇B and curvature drifts and associated phase
mixing, and toroidal finite Larmor radius (FLR) effects



Moment definitions and normalizations
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Equations: 6 moment Gyrofluid Model
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Equations: 6 moment Gyrofluid model (continued)
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Quasineutrality and definitions
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Need to improve original GF model

”Comparisons and physics basis of

tokamak transport models and

turbulence simulations”, Dimits,

et al. Phys. Plasmas, 2000.

Original toroidal gyrofluid closures missing key physics: linearly
undamped zonal flows and nonlinear FLR phase mixing (NLPM)
Attempts made to correctly model zonal flows by modifying Landau
damping closures (Beer, 1998)
NLPM included in earlier slab-geometry gyrofluid model (Dorland,
1993), but not thought to be as important in toroidal geometry



Rosenbluth-Hinton residual flow
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Original gyrofluid model does not allow Rosenbluth-Hinton residual flow



Attempted Zonal Flow Closures (Varenna closure)
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GF modified by Beer et al to allow linearly undamped R-H
residual flows; published in Varenna Proceedings, 1998

q
(0)
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(0)
⊥ are Pfirsch-Schluter heat flows

New model damps to non-zero equilibrium solution

Beer and Hammett, invited talk, published in Proc. of the Joint
Varenna-Lausanne Int. Workshop on Theory of Fusion Plasmas (August 1998),
p.19 (Varenna, Italy 1998).



Problems with Varenna zonal flow closures
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Agreement with Rosenbluth-Hinton theory only good for a small range of low kx
Residual still has some damping even without collisions
Collisional damping of zonal flows not modeled well
For more exotic geometries, theory of residuals becomes very complicated (Catto
& Xiao)



Even better: Fully kinetic zonal flows

Evolve ky = 0 modes with gyrokinetic model (GS2), and all other modes
with original gyrofluid model → Spectral representation makes this trivial
for linear terms
Essentially running GS2 with Ny=1 linearly with nonlinear source term
from GryfX
All nonlinear terms calculated in gyrofluid model; in gyrokinetic equation,
Ngk must be reconstructed from the ky = 0 component of the nonlinear
terms of the gyrofluid moments:
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Consistent with moment definitions, such that
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3v , etc



Hybrid gyrofluid-gyrokinetic algorithm

calculate Nmi [t]all k

calculate Lmi [t]ky 6=0
advance gky=0, Φky=0

t → t + ∆t/2

copy GPU→CPU

Nmi [t]ky =0

calculate mi (t + ∆t/2)ky=0

estimate mi (t + ∆t/2)ky 6=0,
Φ(t + ∆t/2)ky 6=0

calculate Nmi [t + ∆t/2]all k

copy CPU→GPU

mi (t + ∆t/2)ky =0, Φ(t + ∆t/2)ky =0

calculate Lmi [t + ∆t/2]ky 6=0
advance gky=0, Φky=0

t + ∆t/2 → t + ∆t

copy GPU→CPU

Nmi [t + ∆t/2]ky =0

calculate mi (t + ∆t)ky=0

calculate mi (t + ∆t)ky 6=0,
Φ(t + ∆t)ky 6=0

copy CPU→GPU

mi (t + ∆t)ky =0, Φ(t + ∆t)ky =0

GPU (GF) CPU (GK)



ZF velocity space resolution requirements/questions

Preliminary simulation results with low velocity space
resolution (ngauss=3, negrid=6) give same heat fluxes as
higher resolution (ngauss=8, negrid=16)

ntheta=32 so really just reducing v-space resolution for
passing particles

How much (non-trapped) velocity space resolution is
necessary to capture zonal flow dynamics?

What is the velocity space structure of the zonal flows in a full
GS2 simulation?

We only have 6 gyrofluid moments (∼ 6 grid points) for
non-zonal modes... would having too much velocity space
resolution for zonal modes ever become
problematic/overdetermined?



Nonlinear FLR Phase Mixing

Spread in gyro-averaged E×B velocities leads to phase mixing in
perpendicular direction (analogous to Landau damping in parallel
direction)
Entropy cascade in k⊥ and v⊥
Damping proportional to k2

⊥|vE · k⊥|



1-D model of NLPM

Consider a static zonal flow potential Φ = ΦZF (x) in sheared
slab geometry

Neglecting equilibrium and parallel gradients, the GK equation
is
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1-D model of NLPM

Expanding J0 for small k⊥, we can integrate analytically to
see that all moments of F1 decay in time:
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1-D model of NLPM

Working backwards, we find that these expressions are exact solutions of the
following set of equations:
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1-D model of NLPM

We want to recover this damping behavior with our closures, so we break
the r⊥,⊥ closure into Maxwellian and dissipative pieces
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The closure coefficients contain a dissipative and non-dissipative piece, to
try to capture the phase shift
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Find µ’s by minimizing difference between fluid and kinetic density
responses for b = 0.1



1-D model of NLPM

Good agreement for density response for b = 0.1.

GryfX in yellow, Kinetic in blue



1-D model of NLPM

Not as good for larger b... here b = 0.5.

GryfX in yellow, Kinetic in blue



Extending NLPM model to 3-D

In general 3-D geometry, we currently approximate

|v · ∇|M ' DPM

(
|vx |

∣∣∣∣ ∂∂x
∣∣∣∣M + |vy |

∣∣∣∣ ∂∂y
∣∣∣∣M)

This misses interference terms in the original absolute value

Adjustable scalar parameter DPM included to account for this,
with DPM . 1

Is there a better way to evaluate these terms? Greg suggested
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Nonlinear FLR Phase Mixing

Following a similar procedure for the remaining equations, the final
gyrofluid nonlinear terms become
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R/LT scan with NLPM

Including NLPM and kinetic ZF brings GryfX heat flux predictions into
good agreement with GK (GS2)
DPM = 0.35 for all these simulations, ngauss=3, negrid=6



NTP scan with NLPM

Too much NLPM for ε = 0, too little for ε = 0.4
DPM could scale with ZF amplitude?
Or find better way of evaluating |vE · ∇|



Why do we need Gyrofluid Codes?

Transport optimization: Use models coupled to TRINITY
transport solver to evaluate transport properties of tokamak
design configurations

To evaluate a configuration, need to vary T (a), n(a),Q,S ,Π
independently. With 3 points in each direction, 35 = 243
TRINITY runs required.

Configuration parameters to vary include current profile,
elongation, triangularity, β, etc. 128 configurations would be
a start.

A single TRINITY + GS2 simulation requires O(1M) CPU
hours, so entire scan would take ∼ 32,000 M CPU hours

Need to find multiple orders of magnitude of acceleration to
make this project possible → gyrofluid, GPUs



Introducing GryfX: A GPU-based Gyrofluid Turbulence Code
with Kinetic Zonal Flows and Advanced Nonlinear Closures

Gyrofluid vs Gyrokinetic: 6 moments vs 256 grid points in
velocity space ∼ 40X speedup

Gyrofluid model requires less memory → Able to fit efficiently
on GPU

GPU can achieve 20-30X speedup over CPU

Total acceleration > 1,200 X



GryfX (non-hybrid) vs GS2 performance comparison

Total speedup of more than 2,000X over GS2 for large grid



Cost of kinetic ZF minimized by GPU-CPU concurrency

GF runs on GPU while GK runs on 16 CPUs: most supercomputer
configurations allocate multiple CPUs for each GPU, so additional
computation on CPU is essentially free
Slows down by factor of 1-2, but this is an acceptable trade-off to get
zonal flow physics right
With ‘low’ velocity space resolution, converged nonlinear simulations in
∼ 1 hour (on 1 node = GPU + 16 procs)



TRINITY + GryfX on Titan, for example

For full design scan:

GS2 + TRINITY ∼ 32,000 M CPU hours

GryfX (hybrid) + TRINITY ∼ 400 M CPU hours

GryfX (non-hybrid) + TRINITY ∼ 25 M CPU hours
(*only if charged as 1 GPU-hour = 1 CPU-hour*)

Titan (ORNL) has 18,688 nodes, each with 1 GPU and 16
CPUs → 7M CPU hours per day → 450K GryfX runs per day

Full tokamak design study could be completed in a month:
each node is always running its own GryfX calculation, so that
hundreds of configurations can be evaluated simultaneously

Would take years to do this with GS2



Future Work

Keep improving gyrofluid NLPM closures
Use kinetic zonal flows to guide improvements to gyrofluid zonal flow
closures
Implement gyrofluid electron equations (Beer or Snyder)
Use GryfX for more efficient study of experimental results
If accurate enough, GryfX can directly aid gyrokinetic simulations
(resolution/convergence, pre-conditions, etc)
DEMO design project: TRINITY + GryfX

Scan large parameter space efficiently
Find ideal design configurations


