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Motivation

• For realtime control, a tokamak simulator must calculate 
turbulent fluxes on <ms CPU timescale!

• No such first-principle-based model currently exists
How to combine tractability and accuracy?

• Would allow (among others):
i)  efficient offline tokamak scenario preparation and optimization 
ii) discharge supervision
iii) realtime trajectory optimization
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Model hierarchy: ‘The Gold Standard’

1st reduction: 
gyrokinetics (5D), local (spectral radially), �� splitting, gradient driven

e.g., 
GS2/GYRO/GENE/GKV
etc etc etc...

• Calculation of fluxes at one radial point within 
104-105  CPUh (ion and electron scales seperately)

• Allows electromagnetic fluctuations, multiple ion 
species, collisions

• Validated flux matched simulations vs dozens of 
experimental cases

• We consider this the ‘gold standard’ for validating 
reduced models further down the hierarchy
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2nd reduction: quasilinear, e.g. gyrofluid TGLF (G. Staebler PoP 2008) 
gyrokinetic QuaLiKiz (C. Bourdelle PoP 2007), 

2�� reduction: quasilinear modelling
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Key point: � � spectral form and nonlinear saturated amplitude prescribed based 
on physical motivations and fits to nonlinear simulations from up the hierachy
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Following recent speedups (JC TTF 2014, paper in progress) 
∼ 1	CPUs to calculate flux at single radial location. 10* faster than nonlinear
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1. Obtain a good quasilinear model validated vs nonlinear simulations

2. Use quasilinear model to create enormous datasets of turbulent flux 
calculations. Include all tokamak parameters of interest (e.g. based on 
experiments). Feasible with 107 CPUh scale HPC projects (currently 
‘routine’)

3. Define ‘training sets’ from the database to construct nonlinear 
regressions of the data.

4. Use the fitted nonlinear regression as the ‘transport model’

Reduced reduced reduced modelling...

1	+,-� is fast but not fast enough for realtime control! 
How can we go further?

The nonlinear regression technique we’ve been exploring is 
Multilayer Perceptron Neural Networks

Successful and similar recent work: 
neural network fit of DIII-D power balance fluxes with ~20D input space (Meneghini PoP 2014)
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Explanation of neural network technique

Multilayer perceptron network: nonlinear mapping

./ 
 . �01/21
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• Optimal weights found in off-the-shelf optimization algorithms from ‘training set’ 
of known input-output relations

• The trained network then generalizes to previously unknown inputs
• Regularization techniques important to avoid overfitting
• Trained network output in <ms, orders of magnitude less than original calc.
• In the end, an analytical formula with defined analytical derivatives. 

Critical for trajectory optimization and implicit timestep solvers

. 2 
 2
1 3 �45 6 1

Inputs: e.g. Ti/Te, q, �̂, R/LTi

Each node output in “hidden 
layer”: nonlinear function of 
linear input combination

With, e.g.

Universal continuous function approximator (basic literature, Bishop 1995, Haykin 1999)  
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A proof-of-principle NN transport model

Neural network fit for QuaLiKiz output. Adiabatic electrons. ITG regime
(JC, Sarah Breton, F. Felici, F. Imbeaux, accepted to Nucl. Fusion Lett.)

5D input space: 7, �̂, �1/�9,	:/;<1, =>?@
Outputs: growth rates, frequencies, ion heat flux

~4 million instability calculations (4 processors, 1 week). Dense 5D array
q = 1-5, s = 0.1-3, Ti/Te = 0.3-3, R/Lti = 2-12, kθρs = 0.05-0.8 (ion scales)

• Training and validation sets are cut from this large total sample set

• Only ~50,000 points necessary in training set for robust fit

• Regularization avoids overfitting and even allows some extrapolation
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Comparison of neural network fits 

Comparison between fitted network and original model

RMS error of ~0.8 in GB units. Most discrepancies are due to 
regularization, not inherently poor fitting. 

Propagates to small Δ:/;<1 errors (~0.4) due to stiffness
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Comparison of neural network parameter scans

Note that regularization allows reasonable extrapolation.
Extrapolation not recommended, but encouraging for robustness in sparse datasets

Parameter scans of NN ion heat conductivity vs original QuaLiKiz results
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Successful results even with 
basic ‘proof-of principle model’ in ITG regime

• QuaLiKiz NN regression now a transport model in CRONOS integrated modelling code

• Comparison made to QuaLiKiz simulation (Baiocchi NF 2015) of JET 73342

Excellent agreement

Full profile transport fluxes 
calculation only 0.5 ms
with 1 CPU with neural 
network.  
Factor 105 – 106 speedup!

Simulation with NN took 
10 mins with 1 CPU 
instead of 1 day with 
24 CPUs!

Fluxes were not the 

bottleneck in calculation
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Realtime transport model in RAPTOR

BLUE – QLK Neural Network. RED – GLF23

• QuaLiKiz neural network applied in ultra-fast RAPTOR simulator (F. Felici et al 2012)

• Extrapolation to ITER hybrid scenario. QuaLiKiz ANN compared with GLF23 
modelling (JC NF 2010). (GLF23 gyrofluid quasilinear model valid in ITG regime)

• QLKANN/RAPTOR took 8s to calculate 300 ITER seconds!
GLF23/CRONOS took 1 week for same calculation (on 1 CPU) 



Jonathan Citrin Vienna GK workshop, July 2015 12

Summary

• Set out on a quest for simultaneous accuracy and tractability in 
turbulent transport models in tokamaks

• Key technique: neural network regression of a quasilinear reduced 
model, itself validated by nonlinear gyrokinetics

• First proof-of-principle 5D network created and applied in transport 
models. Can reproduce QuaLikiz and GLF23 ITG heat transport
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Perspectives

• Extensions to much higher QuaLiKiz input dimensions ongoing for 
more generality and instability branches (MSc project Juan Redondo)

• Use more complete (but slower) solvers than QuaLiKiz/TGLF (e.g. 
linear-GENE/GKW/GYRO) for high accuracy in the training sets

• Validate RAPTOR/QLKANN output vs experimental data. 
Explore trajectory optimization, including with particle transport

• Set up a community-wide linear database with standardized I/O. 
Pool resources for training sets. Very useful for benchmarks. 
Not dependent on nonlinear saturation rules which continuously evolve

• Extend nonlinear regression techniques to other models. e.g. pedestal 
stability (EPED), neoclassical transport, MHD stability limits.
Ambition: a realtime integrated tokamak simulator from first principles


