Numerical investigations of gyrokinetic turbulence and reconnection with GENE

J. Büchner¹ S.S. Cerri² F. Jenko² M.J. Pueschel³ P.W. Terry³ D. Told² V. Zhdankin³ E. Zweibel³

¹Max-Planck-Institut für Sonnensystemforschung, D-37077 Göttingen
²Max-Planck-Institut für Plasmaphysik, D-85748 Garching
³University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

7th (Astro) Plasma Kinetics Working Group Meeting 2014

2 2D electrostatic studies of GK turbulence

3 2D reconnection studies

2 2D electrostatic studies of GK turbulence

3 2D reconnection studies

Tokamak turbulence: Strongly varying spectral exponents!

A. Bañon Navarro et al. (PoP 2014):

IPP

- GK fusion applications: Take experimental parameters, perform simulations, compare observables to experiment
- Spectral exponents vary a lot for different turbulence regimes, plasma parameters

What determines these exponents for given parameter settings?

Numerical investigations of gyrokinetic turbulence and reconnection with GENE 4 / 24

The gyrokinetic code GENE

- Eulerian code \Rightarrow solves gyrokinetic equations on a fixed grid in 5D phase space
- Originally developed for turbulence studies in fusion plasmas, but generally applicable to plasma turbulence in strong guide fields
- Full electromagnetic fluctuations, $\delta B_{\perp} \& \delta B_{\parallel} \Rightarrow$ applicable to high- β plasmas
- GENE website: http://gene.rzg.mpg.de

Here: Study simple GK systems, gradually add complexity 2D spatial dynamics, neglect background inhomogeneity \Rightarrow

$$\frac{\partial g_j}{\partial t} = \sum_{\mathbf{k}'} \left(k'_x k_y - k_x k'_y \right) \overline{\chi}_j(\mathbf{k}') g_j\left(\mathbf{k} - \mathbf{k}'\right) \\ - \omega_{\mathrm{dr}} \left[g_{j,k_y=0} - g_{j,k_y=0}\left(t=0\right) \right] + \mathcal{C} \left[g_j \right]$$

+ GK Maxwell's equations (with $\overline{\chi}_j = \overline{\phi}_j - v_{\parallel} \overline{A}_{\parallel j} / c + \mu \overline{B}_{\parallel j} / q_j$)

Introduction

2 2D electrostatic studies of GK turbulence

3 2D reconnection studies

Study fundamental properties of 2D GK turbulence

Use same setup as in Tatsuno et al. (PRL '09):

- electrostatic limit ($\chi \equiv \phi$), focusing on $k_{\perp} \rho_i \gg 1$
- sinusoidal initial condition

$$f_1 = A \left[\cos(2k_{x,\min}x) + \cos(2k_{y,\min}y) \right] + B \operatorname{rnd}(k_x, k_y)$$
 with $B \ll A$

- no drive term ⇒ decaying turbulence
- analyze spectral properties of turbulence in the strong-decay phase when the cascade is fully established
- new ingredient: study variation of the spectra as collisionality is increased

IPP

Expect inertial range with power law spectra

Theory for small collisionality (Schekochihin PPCF '08, Plunk JFM '10):

• Nonlinear phase mixing, particles with different ρ_i see different gyroaveraged potentials

 \Rightarrow small spatial structures create small velocity space structures \Rightarrow dissipation through collisions

With $\phi \sim k_\perp^{-1} f$, derive power law exponents

 $lpha_{\phi}=-10/3$, $lpha_{f}=-4/3$

where

$$E_{|\phi|^2}(k_{\perp}) \propto k_{\perp}^{lpha_{\phi}}, \qquad E_{|f|^2}(k_{\perp}) \propto k_{\perp}^{lpha_{f}}$$

Scalings confirmed numerically (Tatsuno PRL '09)

IPP

GENE simulations: low collisionality example

- Collisionality $\nu = 10^{-6}$, max. grid $256 \times 256 \times 32 \times 96$ in $(x, y, v_{\parallel}, \mu)$
- Hyperdiffusion in k_{\perp} (shaded area)

Very good agreement with power law fit to simulation results!

Higher collisionality leads to steeper spectra

Run identical simulations for $\nu = 10^{-5}, \ 10^{-4}$

Spectra steepen at higher collisionality, gradual transition to 'power law \times exponential' shape

Study collisionality dependence

- Tests performed with various resolutions, fit ranges, time windows (and collision operators!)
- Smoothly rising exponents with increasing collisionality

Find steepening of both potential and entropy spectra at higher collisionality

What causes the steepening?

- Test assumptions which enter into theoretical scalings
- First: $\phi \sim k_{\perp}^{-\gamma} f$ with exponent $\gamma = 1$, still true for higher collisionality?
- Evaluate γ from numerical simulations

At high collisionality $\gamma > 1$, but α_{ϕ} and α_{f} begin to steepen even earlier!

Second assumption: k-independent energy flux

Plots: spectral dependence of collisional free energy dissipation

Two observations:

- identical spectral shape
- most dissipation occurs at large scales!

How does this affect the energy flux?

IPP

Modified power laws caused mainly by local dissipation

- At low collisionality, all free energy passes through the cascade
- At higher collisionality, increasing fractions of the total free energy are dissipated before passing through the cascade
- Nonlinear transfer is local in both cases
- see also Hatch et al. PRL (2013)

Further systems with local dissipation effects

• Bratanov et al. (PRL 2013): Non-universal power laws (set by nonlinear transfer vs. linear dissipation) in modified Kuramoto-Sivashinsky turbulence

- Kinetic Alfvén wave turbulence in driven simulations
- Here: energy injection using Langevin antenna current as described in TenBarge et al., CPC (2014)
- How does Landau damping (for different β, T_i/T_e) affect the spectral exponents of KAW turbulence?

Outline

Introduction

2 2D electrostatic studies of GK turbulence

3 2D reconnection studies

Current sheet setup

• Here: periodic boundary conditions \Rightarrow study sinusoidal current sheet

• Initialize f_1 with shifted Maxwellian in v_{\parallel} :

$$f_{1}\left(x, v_{\parallel}, \mu\right) = C \exp\left\{-\frac{1}{T}\left[\frac{m}{2}\left(v_{\parallel} - \Delta v \cos\left(Nk_{x}x\right)\right)^{2} + \mu B\right]\right\}$$

• Counterflowing species; add small-amplitude white noise as perturbation

- Compare linear growth rates to results from Rogers et al., PoP '07
- Excellent agreement between GS2/AstroGK and GENE
- Good agreement with Porcelli's fluid model (PRL '91) in limits of $k_y \rightarrow 0$ (large Δ') and $k_y \rightarrow k_x$ (small Δ') within limits of applicability in (β_{tot} , $k_x, m_e/m_i$)

 $k_{\mathbf{x}}\rho_{\boldsymbol{s}}=0.2,\;m_{\boldsymbol{e}}/m_{\boldsymbol{i}}=1/100,\;\beta_{\boldsymbol{e}}=0.2$

Numerical investigations of gyrokinetic turbulence and reconnection with GENE 18 / 24

Decaying vs. driven turbulence

- Initialize many modes, follow evolution into nonlinear phase
- Particle acceleration: $E_{\parallel} = \frac{1}{B_0} B_{\perp} \cdot E_{\perp} \frac{1}{c} \partial A_{\parallel} / \partial t$, heating rate $j_{\parallel} E_{\parallel}$
- no driving term
- transient generation of E_{\parallel}

 Krook-type forcing term fuels initial current sheets (acting only on k_y = 0), rate ω_{dr}

quasi-steady state

Self-generation of plasmoids

- In nonlinear phase, plasmoids (=parallel current filament with ~circular cross-section) are formed
- Same-sign plasmoids attract each other, larger ones more stable
- Bursts in both E_{\parallel} and $j_{\parallel}E_{\parallel}$ are associated to plasmoid merging events

Isolated plasmoid mergers

- Set up initial condition with two same-sign plasmoids
- May provide useful testbed for benchmarking of different models (possibly in 3d?), studying associated dissipation/acceleration

New activity: reconnection benchmark

Activity within Max-Planck Princeton Center:

- 2D reconnection benchmark PIC & Gyrokinetics, following TenBarge et al., PoP (2014)
- First scans agree reasonably well with AstroGK (and thus NPIC/VPIC), but sensitive to precise initialization

New activity: reconnection benchmark

Activity within Max-Planck Princeton Center:

- 2D reconnection benchmark PIC & Gyrokinetics, following TenBarge et al., PoP (2014)
- First scans agree reasonably well with AstroGK (and thus NPIC/VPIC), but sensitive to precise initialization

Summary

2D study of electrostatic gyrokinetic turbulence properties

- In collisionless limit, find excellent agreement with theory (Schekochihin & Plunk)
- Deviations at higher collisionality, leading to steeper power law decays
- Steepening caused by local collisional dissipation \Rightarrow energy partially dissipated before entering the cascade

Gyrokinetic simulations of reconnection

- Linear regime: successful benchmarking of tearing mode growth rates against AstroGK and Porcelli's fluid model
- Driven turbulent reconnection: find self-generation of plasmoids, associated with strong local parallel electric fields (
 particle acceleration)
- Nonlinear reconnection benchmark also shows good agreement with AstroGK (and thus PIC)