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m Tokamak turbulence: Strongly varying spectral exponents!

A. Bafion Navarro et al. (PoP 2014):

> 33

@ GK fusion applications: Take
experimental parameters,
perform simulations, compare
observables to experiment

> -2.6

—> -3.3 @ Spectral exponents vary a lot
for different turbulence
> -2.0 regimes, plasma parameters

What determines these exponents for given parameter settings? I
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W The gyrokinetic code GENE

o Eulerian code = solves gyrokinetic equations on a fixed grid in 5D phase space

@ Originally developed for turbulence studies in fusion plasmas, but generally
applicable to plasma turbulence in strong guide fields

o Full electromagnetic fluctuations, 6B & dB) = applicable to high-5 plasmas
@ GENE website: http://gene.rzg.mpg.de

Here: Study simple GK systems, gradually add complexity
2D spatial dynamics, neglect background inhomogeneity =

a h
% 5™ (Kiky — kek) % (K g (k — K)

k/
— war [g.k,=0 — &jk,—o0 (£ =0)] +C|g]

+ GK Maxwell's equations (with X; = ¢; — vjjA;/c + uB);/q;)
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m Study fundamental properties of 2D GK turbulence

Use same setup as in Tatsuno et al. (PRL '09):
o electrostatic limit (x = ¢), focusing on ki p;i > 1
@ sinusoidal initial condition
fi = A[cos(2kx,minx) + cos(2ky,miny)] + B rnd(k«, k,) with B < A
@ no drive term = decaying turbulence

@ analyze spectral properties of turbulence in the strong-decay phase when
the cascade is fully established

@ new ingredient: study variation of the spectra as collisionality is increased

00
00

X/m
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W Expect inertial range with power law spectra

Theory for small collisionality (Schekochihin PPCF '08, Plunk JFM '10):

@ Nonlinear phase mixing, particles with different p; see different gyroaveraged

potentials
= small spatial structures create small velocity space structures = dissipation

through collisions

With ¢ ~ kilf , derive power law exponents

Qp = *10/3, af = —4/3

where

E‘d)‘2(kL) X ki¢7 E‘flz(kL) 0.8 kIf

Scalings confirmed numerically (Tatsuno PRL '09)
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GENE simulations: low collisionality example

o Collisionality v = 107°, max. grid 256 x 256 x 32 x 96 in (X, y, v|, &)
I

o Hyperdiffusion in k. (shaded area)
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numerically:
ay = —3.49,

ar = —1.34

Very good agreement with power law fit to simulation results! I

and r ion with GENE
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Entropy spectrum

Collisionality scan

Electrostatic energy spectrum

Spectra steepen at higher collisionality, gradual transition to
'power law x exponential’ shape
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Study collisionality dependence

o Tests performed with various resolutions, fit ranges, time windows (and
collision operators!)

@ Smoothly rising exponents with increasing collisionality

Resolution check II: a,(v) Resolution check II: a,(v)
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Find steepening of both potential and entropy spectra at higher
collisionality

bul
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What causes the steepening?

o Test assumptions which enter into theoretical scalings

o First: ¢ ~ k[ 7f with exponent v = 1, still true for higher collisionality?
o Evaluate v from numerical simulations

[LBhyp] spacetime-—avera

ged y

16| © SR, k,€[3,45]
o SR, kie[[3,45]]
o HRu, k €[3,45
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At high collisionality v > 1, but «y and ar begin to steepen even earlier! I
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Collisional dissipation

Second assumption: k-independent energy flux

Plots: 2
. _ -3
spectral dependence of colli- 3 v=10"
sional free energy dissipation 5
ol
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x10° Collisional dissipation
Two observations: N
@ identical spectral shape . \)=1O_4
@ most dissipation occurs at °
large scales! .
ol
0 10 20 30 40 50 60
kxD

70

How does this affect the energy flux? I
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Free energy flux

@ At low collisionality, all free energy passes
through the cascade

o At higher collisionality, increasing fractions
of the total free energy are dissipated before
passing through the cascade

@ Nonlinear transfer is local in both cases
@ see also Hatch et al. PRL (2013)
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m Further systems with local dissipation effects

o Bratanov et al. (PRL 2013): Non-universal power laws (set by nonlinear
transfer vs. linear dissipation) in modified Kuramoto-Sivashinsky
turbulence

o Kinetic Alfvén wave turbulence in driven
simulations

@ Here: energy injection using Langevin
antenna current as described in TenBarge
et al., CPC (2014)

@ How does Landau damping (for different
B, Ti/ Te) affect the spectral exponents of
KAW turbulence?

Al Ji
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Q 2D electrostatic studies of GK turbulence

© 2D reconnection studies
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Current sheet setup

Here: periodic boundary conditions = study sinusoidal current sheet

Initialize fi with shifted Maxwellian in v

fi (x, v, 1) = Cexp {—% [g (vj — Av cos(NkXx))2 + uB] }

Counterflowing species; add small-amplitude white noise as perturbation
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<Byyz”rms / (Bret Po/Lier)

o transient generation of E
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IPp
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Isolated plasmoid mergers

@ Set up initial condition with two same-sign plasmoids

in 3d?), studying associated dissipation/acceleration

Numerical i igati of gyrokinetic tur and r

@ May provide useful testbed for benchmarking of different models (possibly

with GENE
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— n=128 — n=>512
— n=256 — n=1024

Activity within Max-Planck Princeton Center:

@ 2D reconnection benchmark PIC & Gyrokinetics, following TenBarge et
al., PoP (2014)

o First scans agree reasonably well with AstroGK (and thus NPIC/VPIC),
but sensitive to precise initialization
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1+ — GENE K
— AstroGK  _

Activity within Max-Planck Princeton Center:

@ 2D reconnection benchmark PIC & Gyrokinetics, following TenBarge et
al., PoP (2014)

o First scans agree reasonably well with AstroGK (and thus NPIC/VPIC),
but sensitive to precise initialization
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Summary

2D study of electrostatic gyrokinetic turbulence properties
o In collisionless limit, find excellent agreement with theory (Schekochihin
& Plunk)
@ Deviations at higher collisionality, leading to steeper power law decays

@ Steepening caused by local collisional dissipation = energy partially
dissipated before entering the cascade

Gyrokinetic simulations of reconnection

@ Linear regime: successful benchmarking of tearing mode growth rates
against AstroGK and Porcelli's fluid model

@ Driven turbulent reconnection:
find self-generation of plasmoids, associated with strong local parallel
electric fields (< particle acceleration)

@ Nonlinear reconnection benchmark also shows good agreement with
AstroGK (and thus PIC)
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