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Can Gyrokinetics Really Capture Reconnection?
Magnetic reconnection is ubiquitous and plays an important role in
energy transport.

In-plane quantities play important role in determining reconnection
physics, e.g., in-plane

βy = 8πn0iT0i/δB
2
y = βiB

2
g/δB

2
y ∼ βi/ε2 � 1

Produce density cavities and enhancements of order unity or greater

Outflow velocities well in excess of the thermal speed, e.g.,

δve
vte
∼ de

L

1√
βi

δB0

Bg
∼ ε√

βi
� 1

Significant temperature anisotropies

Produce secondary instabilities such as firehose, Kelvin-Helmholtz,
Bunemann

Despite this, many have studied gyrokinetic reconnection directly, e.g.,
[Rogers et al., 2007, Perona et al., 2010, Numata et al., 2010, 2011,
Pueschel et al., 2011, Zocco and Schekochihin, 2011, Perona et al., 2012,
Zacharias et al., 2012, Loureiro et al., 2013], but gyrokinetic reconnection
has not been compared to full kinetic theory.



Why Should We Care?

Turbulence naturally drives reconnection!
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Gyrokinetics 1

What is gyrokinetics?

Average quantities over the
gyro-motion of particles and
describe the evolution of rings
rather than particles

Gyro-averaged and ordered version
of full Vlasov-Maxwell kinetic
theory

Basic ordering parameters:
ε = ω/Ωci ∼ ρi/L ∼ k‖/k⊥ ∼
δB/Bg � 1

Why is it useful?

Removes high frequency (> Ωci) fluctuations and reduces the
problem from 6 to 5 dimensions

Retains non-linear physics and kinetic effects (FLR, Landau
damping, collisions)

1[Rutherford and Frieman, 1968, Taylor and Hastie, 1968, Antonsen and Lane, 1980, Frieman and Chen, 1982,
Howes et al., 2006]



Gyrokinetic Orderings

Relies on separations of time and spatial scales

Low amplitude fluctuations: F = F0 + δf , where δf ∼ εF0

Time scales, τ−1 � ω � Ωci

Fluctuations: 1
δf

∂δf
∂t ∼ ω ∼ εΩci

Transport: 1
F0

∂F0

∂t ∼ τ
−1 ∼ ε2Ωci

Spatial scales, ρi/L ∼ ε:
Perpendicular to Bg: ∇⊥δf

δf ∼ 1/ρi

Parallel to Bg:
∇‖δf

δf ∼ 1/L



Consequences of The Gyrokinetic Ordering

Cyclotron, plasma wave, and the fast magnetosonic branch are
ordered out of system

Subsonic drifts: vd ∼ εvt
In the absence of collisions, magnetic moment fully conserved

Rigorously quasi-neutral, i.e., δni = δne

Must choose an ε to connect to reality

Most codes do not evolve the transport time-scale, i.e., the
background does not evolve.



PIC GK Comparison [TenBarge et al., 2013]
To address these issues, we set up nearly identical 2D reconnection
simulations in NPIC/VPIC and AstroGK and compare.

Basic parameters

Fusion relevant βi = 8πn0iT0i/B
2
g = 0.01 and solar wind relevant

βi = 1 held fixed.

PIC sweeps the reconnecting field, δB0, down to achieve
Bg = 5, 10, 20, and 50 times δB0 for βi = 0.01 and Bg = 1, 5, and
10 for βi = 1.

mi/me = 25, ωpe/Ωce = 0.8

Note that this means we are in the “non-dispersive” regime of
inertial Alfvén waves for βi = 0.01.

For β = 0.01: Lx = Ly = 40πρi, w = 2ρi, nx = ny = 1024 or
2048, np = 1000, nε = 16, and nλ = 32

For β = 1: Lx = Ly = 20πρi, w = ρi, nx = ny = 2560,
np = 2000, nε = 8, and nλ = 16



Initial Conditions
Initial force-free magnetic field

B =δB0 tanh (x/w)ŷ+√
B2
g + δB2

0 cosh−2 (x/w)ẑ

with a 1% GEM perturbation
Az = δBpert cos (2πx) sin2 (2πy)
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Force-free Versus Harris and Gyrokinetics

A Harris sheet is not initializable in GK.

In a Harris sheet, the current carrying particles are distinct from the
background:

F = FM + δn(x) exp
[
v2⊥ + (vz − δUz)2

]
' FM + δn(x)FM (1− 2vzδUz + · · · )

' FM [1 + δn(x)] .

No current in GK for the typical Harris distribution!

Whereas, in a force-free current sheet there is no perturbed density
associated with the current

F = n0 exp
[
v2⊥ + (vz − δUz(x))2

]
' FM (1− 2vzδUz + · · · )

' FM [1− 2vzδUz(x)] ,

and we now have current in GK.



We Also Add Noise to Match NPIC

Populate first 20 Fourier
modes in x̂ and ŷ with
uniform random noise of
equal RMS amplitude in B.

Noise effects morphology
and transient reconnection
rate.
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We Also Add Noise to Match NPIC

Populate first 20 Fourier
modes in x̂ and ŷ with
uniform random noise of
equal RMS amplitude in B.

Noise effects morphology
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Temporal Evolution

Purely noise No noise
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Reconnection Rates
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Reconnection rates as a function of
in-plane Alfvén crossing time. Upper
panel is βi = 0.01 and lower is βi = 1.

Note that for βi = 0.01 that
βi < mi/me, i.e., no
dispersive waves.

Reconnection appears fast in
the dispersiveless regime,
which is not observed in two
fluid codes.



Scaling Study
That reconnection remains fast in the dispersiveless regime requires
further evidence in the form of a scaling study–we alter the size of the
simulation while keeping all other parameters fixed.
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Thick lines represent runs seeded with noise.

The peak rates seems to be box size independent, and the late-time,
steady rate is box and noise independent above the flux limited threshold.



Choosing an ε

AstroGK quantities are normalized to ε, e.g., δBAGK = δB
Bg

1
ε . To

connect to the background quantities, we need to determine a
value of ε. We take ε = δB0/Bg from PIC. Using this value for ε,
we can either convert PIC results to AGK normalization or vice
versa.
For the following set of figures, the out-of-plane current from PIC
has been converted to AGK units: JAGK = J

qin0ivti
1
ε .



Early Time Current Comparison, βi = 0.01
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Late Time Current Comparison, βi = 0.01
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τA = 80.



Late Time Current Comparison, βi = 1
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Jz prior to secondary island formation,
τA = 88, 90, 64, and 73.

βi = 0.01 requires
Bg/δB0 ' 50 to
reach morphological
convergence with GK.

But, βi = 1 is
converged by
Bg/δB0 = 5.

So, the convergence
has a clear βi
dependence.



Morphology
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dominated by physics

Pressure balance across the sheet
implies

δP tot+BgδBz/4π+δB2/8π = const.

δP tot is well observed to have
quadrupolar asymmetry for Bg >
0 and δB2 is manifestly even.
Assuming δP/P0 ∼ δB0/Bg,

δBoddz

δBevenz

∼ βi
Bg
δB0

∼ 1

ε
.

Therefore, the symmetry of δBz
is determined by the above ratio
Rogers et al. [2003]. Further, δBz
and δne are anti-correlated along
the separatrices, and Jz peaks at
density enhancements.



Magnitude Comparison, Density
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Magnitude Comparison

Ratios of the RMS of each value from PIC to the RMS AstroGK value over the
regions presented in ”Late Time Current Comparison” figures.

Run Jz viz vey Bx ne (T⊥/T‖)
i (T⊥/T‖)

e

βi0.01Bg5 1.1 1.2 0.90 1.0 0.92 0.97 0.012
βi0.01Bg10 1.1 1.2 0.94 0.93 0.98 1.0 0.95
βi0.01Bg20 1.0 1.2 1.0 0.85 1.1 1.0 0.99
βi0.01Bg50 1.0 1.5 2.4 0.95 2.0 1.0 1.0
βi1Bg1 1.1 1.4 1.1 1.0 1.3 0.84 0.92
βi1Bg5 1.1 1.4 1.1 1.2 1.3 0.99 1.0
βi1Bg10 1.1 0.98 1.1 0.99 1.8 1.0 1.1



Temperature Anisotropy

P‖ = m

∫
dvfv2‖ = Pxxb̂

2
x + Pyy b̂

2
y + Pzz b̂

2
z + 2Pxy b̂xb̂y + 2Pxz b̂xb̂z+

2Pyz b̂y b̂z = P0 + δPzz + 2
δBz
Bg

P0

P⊥ '
Pii − P‖

2
= P0 +

1

2
(δPxx + δPyy)− δBz

Bg
P0

And,
T⊥
T‖

=
T0 + δT⊥
T0 + δT‖

=
1/ε+ δT̂⊥

1/ε+ δT̂‖
,

where δT̂ = δT/(T0ε) is in AGK units and ε = δB0/Bg.



Linear Scaling

The observed magnitude agreement implies that the reconnection
produced quantities scale linearly with the guide field in the
Bg > δB0 limit.

For example, Jz
en0vti

Bg

δB0
= const. and δne

n0e

Bg

δB0
= const.

This scaling implies a single large guide reconnection simulation can
be scaled to represent a wide range of guide fields.



Energy In Each System

The background in AstroGK does not evolve. Generally, the
background evolves on the slow transport timescale in gyrokinetics.

The total energy in PIC is E = B2

8π +
∑
s

1
2msnsδU

2
s + 3

2Ps.

This quantity is well conserved in the PIC simulations but requires a
choice of ε for comparison to AGK.

Without invoking an ε, we can instead use the perturbed energy only

δE =
δB2

8π
+
∑
s

1

2
msn0sδU

2
s +

3

2
δPs.

The conserved quantity in gyrokinetics is the generalized energy

W =
δB2

8π
+
∑
s

∫
d3v

T0sδf
2
s

2F0s
=
δB2

8π
+
∑
s

1

2
msn0sδU

2
s+

∫
d3v

T0sδf̃
2
s

2F0s
,

where the final term is assumed to be equivalent to 3δPs/2.



Energy Conversion
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Summary

PIC does converge morphologically toward gyrokinetics in the
strong guide field limit, but the convergence is βi dependent.

Gyrokinetics makes correct predictions for the magnitudes of
physical quantities, even outside its regime of formal
applicability.

Gyrokinetics fails to capture the correct morphology and
secondary instabilities that arise for weaker guide fields.

Reconnection quantities scale linearly with Bg in the
δB0 � Bg limit.

The fractional energy change and anisotropic ”heating” is well
modeled by gyrokinetics for all values for which δB0 < Bg.
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