# Magnetic field generation and amplification in an expanding plasma

Kevin Schoeffler, Nuno Loureiro, Luis Silva, Ricardo Fonseca

IPFN, Instituto Superior Técnico Lisboa, Portugal

April 3, 2014



# To the origin of magnetic fields

- Magnetic field origin central problem in astrophysics (Kulsrud 2008).
- Turbulent dynamo (the standard explanation) requires a seed field to amplify
- This seed is generally attributed to the Biermann battery (Kulsrud 1992)
- Biermann battery:
  - generated by gradients  $\nabla n \times \nabla T \neq 0$
  - should follow a B ~ d<sub>i</sub>/L scaling of magnetic field (Haines 1997)
  - often leads to small fields compared to pressure  $(\beta^{-2})$
  - also found in laser-solid plasma experiments

- Initial state:
  - No magnetic fields
- Ingredients:
  - Density gradient:  $\nabla n$
  - Temperature gradient:  $\nabla {\cal T}$
  - Perpendicular gradients:  $\nabla n \times \nabla T \neq 0$
- Results:

Magnetic field generated

$$rac{d \mathbf{B}}{dt} = -c 
abla imes \mathbf{E}$$

- All magnetic fields start as a curl of E
- We need an electric field, E
- We need the curl to be nonzero

## Well then where do electric fields come from

$$\mathbf{E} = -\mathbf{v}_{\mathbf{i}} \times \mathbf{B}/c - \mathbf{J} \times \mathbf{B}/cne - \nabla(nT)/ne - \eta \mathbf{J} - m_e \frac{d\mathbf{J}}{dt}/ne^2$$
$$\mathbf{J} = c\nabla \times \mathbf{B}/4\pi$$

• All other terms have magnetic fields

• If 
$$\nabla n \times \nabla T = 0$$
  
 $\nabla \times \mathbf{E} = 0$ 

- $m_i/m_e > 1$ , so electrons respond to the pressure gradients quicker
- A voltage drop appears, and an **E** is generated

#### Lasers can cause Biermann



#### (Kugland et al. 2012)

- Two polyethylene disc targets  $340 \mu m imes 100 \mu m$
- $\bullet$  lonized by 351 nm lasers,  $3\times 10^{15} W cm^{-2}$
- $\nabla T$  perpendicular to the beam
- $\nabla n$  towards the target

# Magnetic fields are measured



- Magnetic field measured by Thompson scattering
- Long lasting in time
- Varied length scales

(Kugland et al. 2012)

# The computational setup



- Using the 3D PIC code OSIRIS
  - No initial magnetic fields
  - Spheroid density profile
  - Cylindrical temperature profile
- Let it expand
- ... Magnetic fields will be generated

# Self-consistent 3D kinetic Biermann battery simulated

Time =  $235.20 \omega_{pe}^{-1}$ 



- 3D simulation performed
- Magnetic fields generated

$$L/d_e = 50$$

• Simulation parameters:

$$m_i/m_e = 25, \qquad ppg = 64, \ 16 \ {}_{
m gridpoints}/d_e, \qquad 0.625 \ {}_{
m gridpoints}/\lambda_{debye}$$

• Mass ratio study shows no significant difference up to  $m_i/m_e = 2000$ 

# Let's try 2D





- Due to azimuthal symmetry 2D is sufficient
- $a)L/d_e = 50$  based on 3D (Pure Biermann)
- $b)L/d_e = 400$  (Weibel)

# When do we get Weibel?

• the Weibel instability

• in collisionless systems

$$egin{aligned} k^2c^2 - \omega^2 - \sum_lpha \omega_{
holpha}^2 A_lpha - \sum_lpha \omega_{
holpha}^2 \left(A_lpha + 1
ight) \xi_lpha Z\left(\xi_lpha
ight) = 0 \ A &\equiv T_{
hot}/T_{
m cold} - 1 \end{aligned}$$

• generated by pressure anisotropies, A, (found in our system) Time =  $840 \omega_{ve}^{-1}$ 



- rapidly amplifies Biermann seed field
- provides a new seed for dynamo

# The magnetic field saturates



- The fields grow to a peak, and saturate for various  $L_T/d_e$ .
- The field grows when the linear Weibel growth rate is a maximum.

# Haines scaling and beyond



- Normalized  $\mathbf{B} = \beta^{-1/2}$  follows 1/L scaling as expected ... (Haines 1997)
- then remains finite at large *L* (Weibel regime)

# You can see it in the spectra



- a) Spectrum with  $L/d_e = 400$
- First, Biermann peak appears
- Next, the higher k Weibel fields grow
- -16/3 spectra below ρ<sub>e</sub>: Electron entropy cascade? (Schekochihin 2009)
- b) Spectrum with  $L/d_e = 50$  (3D vs. 2D)

- Biermann battery generated by perpendicular temperature and density gradients
- We simulate these conditions in the PIC (particle-in-cell) code OSIRIS (First self-consistent kinetic 3D model)
- Results can be applied to
  - laser experiments B is proportional to  $d_i/L$  confirming the Haines scaling
  - astrophysical turbulent dynamo
     For large L/d<sub>i</sub> the Weibel instability generates (seed)
     magnetic fields independent of L/d<sub>i</sub>
  - turbulent collisionless plasmas Schekochihin -16/3 sub- $\rho_e$  power law observed

this work is supported by FCT via project no. PTDC/118187 simulations done at SuperMUC (Germany) under a PRACE award Find out more at: http://arxiv.org/abs/1308.3421