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Why pressure anisotropy?

magnetic field introduces periodic motion
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Why pressure anisotropy?

1. Magnetic moment: conservation of angular momentum

sum over particles:



Why pressure anisotropy?

2. Bounce invariant: conservation of linear momentum

sum over particles:



adiabatic evolution:

and

Why pressure anisotropy?



typical structure of magnetic fields
generated by turbulence from

MHD simulations with
(isotropic) Pm >> 1
(Schekochihin+ 2004)

B increasing

B decreasing

Where pressure anisotropy?



intracluster medium of
galaxy clusters

radiatively inefficient
accretion flows

solar wind

How much 
pressure anisotropy?

include collisions ... 
then on scales larger than mfp  ,

adiabatic
production

collisional 
relaxation

Braginskii 1965



intracluster medium of
galaxy clusters

radiatively inefficient
accretion flows

solar wind

~0.3 (?) ~0.05 (?)

Why important?

Kunz 2011: 

Kunz+ 2011:

Kunz+ 2012: 
modifies convection

linearly & non-linearly



intracluster medium of
galaxy clusters

radiatively inefficient
accretion flows

solar wind

in less than 
an orbit

Why important?
Sharma et al 2006, 2007:



intracluster medium of
galaxy clusters

radiatively inefficient
accretion flows

solar wind

adiabatic 
expansion:

Bale+ 2009

can be observed



Bale+ 2009

FIREHOSE

MIRROR

solar wind obeys stability thresholds ... 
expect ICM and hot accretion flows to do the same



Bale+ 2009

fluctuations pronounced at boundaries ...
what is their role in regulating the pressure anisotropy?



Wicks+ 2013

fluctuations pronounced at boundaries ...
what is their role in regulating the pressure anisotropy?

fast wind only



Parallel pressure forces 
squeeze tube out. 

Rosenbluth 1956 
Southwood and  
Kivelson 1993 P|| P|| 

Tighter bend grows 
faster. 

firehose instability

tension force



quasi-linear theory: firehose instability

+



mirror instability
Perpendicular pressure forces

blow out field lines

Rudakov & Sagdeev 1958
Shapiro & Shevchenko 1964



quasi-linear theory: mirror instability

+



Horbury & Lucek 2009

~30 deg angle 
between 

mirror’s long 
axis and <B>

mirror modes observed
in magnetosheath

Stevens & Kasper 2007

pressure-supported
structures



mirror-mode “storms” in stream-interaction regions

Enríquez-Rivera+ 2013



what if pressure anisotropy is driven 
instead of initially imposed?

(as it is in nature)

turbulent stirring

radial expansion
expanding-box model

Matteini+ 2006
Hellinger & Trávnícek 2008

shearing-sheet model
this work
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kinetic ions:

massless fluid 
electrons:

Faraday:

quasi-neutrality: ion pressure tensor:



Kunz et al. 2014, JCoPh

2nd-order-accurate iterative 
Crank-Nicholson algorithm with:
- symplectic solver for ions
- constrained transport for B
- delta-f or full-F methods
- shearing box with FARGO
- variety of boundary conditions
- well-tested
- efficiently parallelized with MPI

Pegasus
A 6-D hybrid-kinetic PIC code for
astrophysical plasma dynamics



time

how particle-in-cell works



shearing sheet
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field unwraps
drives            .

goes firehose unstable



firehose instability

+

then what?



the plasma finds a 
way of not producing
pressure anisotropy

minimize
i.e. regulate                .

either:

what is the effective Reynolds number?

the plasma effectively
increases its 
collisionality

increase
i.e. break   .
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secular growth comes from minimizing            . 
Schekochihin et al 2005; Rosin et al 2011

pressure 
anisotropy 

driven by shear

pressure
anisotropy 

driven by FH
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pressure anisotropy ultimately 
regulated by breaking   .



vary shear rate...

at saturation

small-amplitude
firehose turbulence
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collisionality required to maintain marginal stability

measured scattering rate during saturation

measured scattering rate during secular phase



firehose turbulence



energy-containing mode during secular phase has

and we know

Suppose ; then



KAW cascade



Alexandrova+ 2009 

Chen+ 2013

Howes+ 2011 

KAW cascade

observed in SW
simulated using GK



shearing sheet

field wraps up
drives            .

goes mirror unstable
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mirror instability

+

then what?
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secular growth comes from minimizing            . 
Schekochihin et al 2005

pressure 
anisotropy 

driven by shear

pressure
anisotropy 

driven by mirror
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pressure anisotropy regulated by (majority) trapped
particles sampling regions where dlnB/dt ~ 0



trapped

passing

pressure anisotropy regulated by (majority) trapped
particles sampling regions where dlnB/dt ~ 0



vary shear rate...

at saturation

universal behavior
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collisionality required to maintain marginal stability

measured scattering rate during saturation

measured scattering rate during secular phase



KAW cascademirror turbulence





energy-containing mode during secular phase has

and we know

Suppose ; then



Summary

exponential growth, secular evolution, marginal stability...

  firehose: ...maintained (independent of     ) by particle scattering;
  mirror: ...maintained by    -conserving trapped particles trapped

                   in regions of                ;

sub-grid model suggested for firehose; more difficult for mirror

and saturation...

  firehose: ...by scattering with                                  .
  mirror: ...by scattering with                    . 

power-law spectra for firehose and mirror (observable?)
    microscale energy injection drives KAW cascade (observed)



Outlook: transport coefficients

B increasing

B decreasingeffectively no magnetic tension in 
regions of decreasing B

maintained by 

parallel rate-of-strain regulated in regions of increasing B:
energy diverted into producing microscale mirrors

how do electrons interact with spectrum of ion-scale mirrors?



Kinetic MRI slides



how do these microinstabilities affect 
mesoscale evolution?

look at accretion disk:

x 

y 

z 
shearing box 



what you get is the kinetic MRI
(Quataert, Dorland & Hammett 2002)

Coriolis

tidal

anisotropic
spring



Kunz+ 2014

what you get is the kinetic MRI
(Quataert, Dorland & Hammett 2002)



in axisymmetry with net flux

Kunz+ 2014



Kunz+ 2014



Kunz+ 2014



in axisymmetry with zero net flux



time

color: magnetic-field strength



time

color: magnetic-field strength



full 3d-3v being pursued...

B



Thanks be to Alex.


