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The Earth’s Magnetic Shield
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Spacecraft Observations of Reconnection

Cluster observations on 2001-10-01.

Bi-directional Beams

L.-J. Chen, et al JGR (2008), POP (2009)
Egedal, et al. JGR (2010)
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Another Cluster Event

Hwang et al., JGR 2013,
Cluster, August 18, 2002 i
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Wind Spacecraft Observations in
Distant Magnetotail, 60R

 Measurements within the ion
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Isotropic
pressure

Kinetic
Simulation

Two-Fluid vs Kinetic Simulations

Out of plane
current

-8 L 0 xfdl. 8
Particle In Cell (PIC) simulation,



Wind Spacecraft Observations in
Distant Magnetotall, 60R_

« Measurements within the ion
diffusion region reveal:
Strong anisotropy in f,
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Electrons in an Expanding Flux Tube

Trapped electron

- o
- -
— -
—— - -
—-—— et
—————— T — e ————————

——— ——————— T~
-——.-—‘—.___“
-
~—
—
—
~—

- ——————————
—-——————
—
-
—
-
e ———

Magnetic moment:
mv,°

2B
=» mirror force:

IL[:



Electrons in an Expanding Flux Tube

Trapped electron
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Electrons in an Expanding Flux Tube

Expanding Flux tube c s c
— —_—

Passing:
E=Cu T e
= feo=tch Ejoe =& —/E(I'” B =0
Vlasov: of D) (x) = /x TEBea
af v { fol€ —e®)) . passing
f(x,v) = foo(Exo) foo(UBso) , trapped

J. Egedal et al., JGR (2009)



Formal Derivation using an “Ordering”
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Wind Spacecraft Observations in
Distant Magnetotall, 60R.

foo(tBss) . trapped




Field Structure at Full Mass Ratio . pritchet)

Onset of magnetic reconnection in the presence of a normal
magnetic field: Realistic ion to electron mass ratio

. 1
P. L. Pritchett’  JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A10208, doi:10.1029/2010JA015371, 2010

(a) ed/T,

-10 10

Figure 6. The electrostatic potential e®/T, at time §2;y¢ =40 for the simulation with m;/m,= 1600 in (a) the
x, z plane and (b) as a profile along x atz = 0.

[19] Figure 8Ba shows the parallel potential | computed
from the field E) by the definition [Egedal et al., 2009]

tD”(x)__/IE~df (3) 2 15 -1 05 ©0 05 1 15 2 25 3
X

Figure 8. Structure attime (2,0t =40 for the simulation with m;/m, = 1600 for (a) the parallel potential e® /T,

where the integration is carried out from the point x along the and (b) the electron temperature anisotropy 7,/7 ..

magnetic field to the boundary of the simulation box. WNote
that @ contains contributions from both the electrostatic and
inductive electric fields.
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Upshot: New Fluid Closure (EoS)

foo(g — e(I)”) , passing vy B/Bm:b__s
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EoS previously confirmed in 2D simulations,

now also in 3D simulations.
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Ohia et al.,

Anisotropic Isotropic

Kinetic
Simulation

New EoS Implemented
In Two-Fluid Code
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Model for islands?

Conserved quantities:

jt = muvt /B
‘E]g 'E'| dé

Area, flux, density:




Model for islands?
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EoS for Anti-Parallel Reconnection?

The electrons are magnetized in the inflow region:

& Logyo(p)

100

z/d 300

Pitch angle diffusion is
controlled by:

k= +/Fg/pe

Depends on B, and m;/m,




Where does Guide-Field
Reconnection Begin?

Kinetic simulation results at m; /m, = 400, [A Leetal., PRL 2013]
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Where does Guide-Field
Reconnection Begin?

Kinetic simulation results at m; /m, = 1836, [A Le etal., PRL 2013]
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Regimes of the Electron Diffusion Region

J, in PIC simulations at m;/m_ = 1836 Regimes of reconnection vs.
m;/m, and B,
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Unexplored regime of reconnection, relevant to the MMS mission



Scaling Law for Electron Heating
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FLUID: NEW CLOSURE
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Anisotropic
pressure

Py — Py

Additional current term: e
JJ_extra, — [(p” _pJ_)/B}bXbe

The magnetic tension is balanced by pressure anisotropy. (e® /T )

= IMaX

py(n,B) — p1(n,B) = By

Use EoS to get scaling laws:

B = plasma pressure
: magnetic pressure 0!

Magnetotail: f., = 0.003 o=



Simulation with £, ~ 0.003

z/d.

z/d.

z/d.

60 100 140 180 220 260
x/d.



Spacecraft Distributions Reproduced

- | N
- ’ 7‘3, -

J. Egedal et al., Nature Physics (2012)



@, confines electrons, allowing
sustained energization by E |

Trapped region with
pitch angle scattering

Heated by v, -E, ,
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Generation of Super-Thermals
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Generation of Super-Thermals
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Role of Collisions:

invariant
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Reconnection setup in CRX

MPDX (just delivered)
Insert holding field coils .




Key new hardware

Helmholtz Coils MPDX with TREX
« 2 x80turns, CW, 800A hardware
= B ~ 0.025T
TF coll
* 96 turns,

Poloidal field coils

Reconnection drive colls

CW, 800A, = B=0.015T @ R=1m
Pulsed, 13kA=> B =0.25T @ R=1m

2 % 20 turns, pulsed, 5kA
= B~0.04T

2 x 1 turns, 5kV, 10kA




Asymmetric reconnection in TREX

Simple configuration
using the HH-coils
plus two internal coils

This will be the first
configuration to be
Implemented

1_

E
x

Low [3 plasma

High  plasma




Symmetric Inflow Configuration

TREX, poloidal magnetic fields

N ni/m. = 1836

Collisional VPIC simulation

Electron current sheets



. . F Single X-line Multiple X-line
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 Pulsed operation
of magnetic coils

Strong Guide-field Reconnection
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Conclusion

The construction of the new Terrestrial Reconnnection EXperiment
Is well under way

TREX is highly leveraged against earlier NSF investments through
the use of the MPDX-vessel and plasma production

TREX provides huge flexibility
In available configurations, and
the insert will allow for fast turn-
around.

Reconnection in an
unprecedented range of plasma
parameters to be explored

Thanks to Cary and the MPDX
team for a good start on TREX!



