Pressure Anisotropy in Collisionless Reconnection

J Egedal, O Ohia, J Olson, Z Williams, J Boguski, C Forest, W Daughton, V. S. Lukin, J Wallace, and the MPDX-team

Physics Department, UW-Madison

Outline

- Examples of Magnetic Reconnection
- Model for Electron Pressure Anisotropy
- Fixing the Fluid Equations (The Equations of State)
- Regimes of Reconnection
- Opportunities with TREX
- Conclusions

The Earth's Magnetic Shield

Spacecraft Observations of Reconnection

Cluster observations on 2001-10-01.

Lobe: $T_{e\infty} \sim 0.10 \text{ keV}$ Inflow: $T_{e\perp} \sim 0.10 \text{ keV}$, $T_{e\parallel} \sim 1 \text{ keV}$ Exhaust: $T_{e\perp} \sim T_{e\parallel} \sim 10 \text{ keV} = 100 T_{e\infty}$

Another Cluster Event

Wind Spacecraft Observations in Distant Magnetotail, 60*R*_E

Outline

- Examples of Magnetic Reconnection
- Model for Electron Pressure Anisotropy
- Fixing the Fluid Equations (The Equations of State)
- Regimes of Reconnection
- Opportunities with TREX
- Conclusions

Two-Fluid vs Kinetic Simulations

lsotropic pressure

Kinetic

Wind Spacecraft Observations in Distant Magnetotail, 60*R*_E

• Measurements within the ion diffusion region reveal: Strong anisotropy in f_e

 $p_{\parallel} > p_{\perp}$

Electrons in an Expanding Flux Tube

Magnetic moment:

$$\mu = \frac{m v_{\perp}^{2}}{2B}$$

$$\Rightarrow \text{ mirror force:}$$

Electrons in an Expanding Flux Tube

Electrons in an Expanding Flux Tube

J. Egedal et al., JGR (2009)

Formal Derivation using an "Ordering"

Wind Spacecraft Observations in Distant Magnetotail, 60R_E

Field Structure at Full Mass Ratio (P. Pritchett)

Onset of magnetic reconnection in the presence of a normal magnetic field: Realistic ion to electron mass ratio

P. L. Pritchett¹ JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A10208, doi:10.1029/2010JA015371, 2010

Figure 6. The electrostatic potential $e\Phi/T_e$ at time $\Omega_{i0}t = 40$ for the simulation with $m_i/m_e = 1600$ in (a) the x, z plane and (b) as a profile along x at z = 0.

[19] Figure 8a shows the parallel potential Φ_{\parallel} computed from the field E_{\parallel} by the definition [*Egedal et al.*, 2009]

$$\Phi_{\parallel}(\mathbf{x}) = \int_{\mathbf{x}}^{\infty} \mathbf{E} \cdot d\ell, \qquad (3)$$

where the integration is carried out from the point x along the magnetic field to the boundary of the simulation box. Note that Φ_{\parallel} contains contributions from both the electrostatic and inductive electric fields.

Figure 8. Structure at time $\Omega_{i0}t = 40$ for the simulation with $m_i/m_e = 1600$ for (a) the parallel potential $e\Phi_{\parallel}/T_e$ and (b) the electron temperature anisotropy $T_{e\parallel}/T_{e\perp}$.

Outline

- Examples of Magnetic Reconnection
- Model for Electron Pressure Anisotropy
- Fixing the Fluid Equations (The Equations of State)
- Regimes of Reconnection
- Opportunities with TREX
- Conclusions

Upshot: New Fluid Closure (EoS)

$$f(\mathbf{x}, \mathbf{v}) = \begin{cases} f_{\infty}(\mathcal{E} - e\Phi_{\parallel}) &, \text{ passing} \\ f_{\infty}(\mu B_{\infty}) &, \text{ trapped} \end{cases}$$

$$\int \dots d^{3}\mathbf{v} \qquad \begin{bmatrix} n = n(B, \Phi_{\parallel}) \\ p_{\parallel} = p_{\parallel}(B, \Phi_{\parallel}) \\ p_{\perp} = p_{\perp}(B, \Phi_{\parallel}) \\ p_{\perp} = p_{\perp}(B, \Phi_{\parallel}) \end{cases}$$
Eliminate $\Phi_{\parallel} \Rightarrow \qquad p_{\parallel} = p_{\parallel}(n, B) \\ p_{\perp} = p_{\perp}(n, B) \\ p_{\perp} = p_{\perp}(n, B) \end{cases}$

$$p_{\parallel} \propto nB$$
Smooth transition from Boltzmann to double adiabatic (Chew, Goldberger, FE... Low) scaling A. Le et al., PRL (2009) A. Le et al., PRL (2009) A. Let al.

Confirmed in Kinetic Simulations

EoS previously confirmed in 2D simulations, now also in 3D simulations.

New *EoS* Implemented in Two-Fluid Code

Ohia et al., PRL, 2012

Out of plane current

Model for islands?

Model for islands?

Outline

- Examples of Magnetic Reconnection
- Model for Electron Pressure Anisotropy
- Fixing the Fluid Equations (The Equations of State)
- Regimes of Reconnection
- Opportunities with TREX
- Conclusions

EoS for Anti-Parallel Reconnection?

The electrons are magnetized in the inflow region:

Where does Guide-Field Reconnection Begin?

Kinetic simulation results at $m_i / m_e = 400$, [A Le et al., PRL 2013]

Where does Guide-Field Reconnection Begin?

Kinetic simulation results at $m_i / m_e = 1836$, [A Le et al., PRL 2013]

Regimes of the Electron Diffusion Region

Unexplored regime of reconnection, relevant to the MMS mission

Scaling Law for Electron Heating

The magnetic tension is balanced by pressure anisotropy:

$$p_{\parallel}(n,B) - p_{\perp}(n,B) = B^2 / \mu_0$$

Use *EoS* to get scaling laws:

$$\beta_{e\infty} = \frac{\text{plasma pressure}}{\text{magnetic pressure}}$$

Magnetotail: $\beta_{e\infty} = 0.003$

Simulation with $\beta_{\rm e} \sim 0.003$

Spacecraft Distributions Reproduced

J. Egedal et al., Nature Physics (2012)

Generation of Super-Thermals

Generation of Super-Thermals

Outline

- Examples of Magnetic Reconnection
- Model for Electron Pressure Anisotropy
- Fixing the Fluid Equations (The Equations of State)
- Regimes of Reconnection
- Opportunities with TREX
- Conclusions

Role of Collisions:

Full electron transit must be completed without collisions:

$$\tau_e > \frac{d_i}{0.1 \nu_A} \quad \Leftrightarrow \quad \nu_e / \omega_{ce} < 0.1 \ \frac{m_e}{m_i}$$

or

$$S > 10^4 \frac{L}{d_i}$$

Reconnection setup in CRX

MPDX (just delivered)

Insert holding field coils

Key new hardware

- Helmholtz Coils
 - 2 × 80 turns, CW, 800A
 → B ~ 0.025T
- TF coil
 - 96 turns,
 - CW, 800A, → B= 0.015 T @ R=1m
 - Pulsed, $13kA \rightarrow B = 0.25 T @ R=1m$
- Poloidal field coils
 - 2 × 20 turns, pulsed, 5kA
 → B ~ 0.04T
- Reconnection drive coils
 - 2×1 turns, 5kV, 10kA

Asymmetric reconnection in TREX

- Simple configuration using the HH-coils plus two internal coils
- This will be the first configuration to be implemented

Symmetric Inflow Configuration

Collisional VPIC simulation

Role of Collisions, Moderate Guidefield Reconnection

- Continuous operation of magnetic coils
- Plasma pulsed at 1Hz
- $B_{o} = 20 \text{ mT at } 1 \text{m}$

0.1-10

10 - 100

0.1-1

8 - 40

5 - 10

8 - 30

CRX

MRX

VTF

Strong Guide-field Reconnection

- Pulsed operation of magnetic coils
- 3 min between pulses
- $B_g = 0.25T$ at 1m

	$n_e/[\mathrm{m}^{-3}]$	$T_e/[eV]$	$B_r/[T]$	$B_g/[T]$	L/[m]
TREX	$10^{17} - 10^{19}$	8-40	0 - 0.05	0-0.3	0.8 – 2
MRX	$10^{19} - 10^{20}$	5 - 10	0.03	0 - 0.1	0.7
VTF	$10^{17} - 10^{18}$	8 - 30	0.01	0.1	0.3

 $\rho_{\rm s} = (2m_{\rm i}T_{\rm e})^{1/2}/eB$ = "ion sound Larmor Radius"

Conclusion

- The construction of the new Terrestrial Reconnection EXperiment is well under way
- TREX is highly leveraged against earlier NSF investments through the use of the MPDX-vessel and plasma production
- TREX provides huge flexibility in available configurations, and the insert will allow for fast turnaround.
- Reconnection in an unprecedented range of plasma parameters to be explored
- Thanks to Cary and the MPDX team for a good start on TREX!

