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Three-dimensional kinetic simulations of magnetic reconnection for parameter regimes relevant to
the magnetopause current layer feature the development of turbulence, driven by the magnetic and
velocity shear, and dominated by coherent structures including flux ropes, current sheets and flow
vortices. Here we propose a new approach for computing the global reconnection rate in the presence
of this complexity. The mixing of electrons originating from separate sides of the magnetopause
layer are used as a proxy to rapidly identify the magnetic topology, and thus track the evolution of
magnetic flux. The details of this method are illustrated for an asymmetric current layer relevant to
the subsolar region and for a flow shear dominated layer relevant to the lower lattitude magnetopause.
While the three-dimensional reconnection rates show a number of interesting differences relative to
the corresponding two-dimensional simulations, the time scale for the energy conversion remains
very similar. These results suggest that the mixing of field lines between topologies is more easily
influenced by kinetic turbulence than the physics responsible for the energy conversion.

PACS numbers:

I. INTRODUCTION

Magnetic reconnection remains one of the most
widespread and challenging problems in plasma physics,
due to the inherent cross-scale coupling ranging from
global structures down to the ion and electron kinetic
scales. The energy conversion and plasma transport aris-
ing from reconnection are believed to be of key impor-
tance in fusion machines, planetary magnetospheres, the
solar corona, and a variety of astrophysical applications.
Within two-dimensional (2D) models, the basic under-
standing of how reconnection proceeds in both collisional
and kinetic parameter regimes has progressed rapidly in
recent years (e.g., see [1–3] and references therein). In
comparison, the influence of realistic three-dimensional
(3D) dynamics in large systems remains far less explored.
To begin with, defining and computing the 3D reconnec-
tion rate is much more difficult in magnetic geometries
that are intrinsically three-dimensional (e.g. see [4] and
references therein). In addition, researchers have sug-
gested that reconnection may be quite different in in large
astrophysical problems due to pre-existing turbulence [5–

11], or field line chaos [12–15].

From a computational perspective, progress in un-
derstanding the 3D evolution of reconnection has been
severely constrained due to the inherent multi-scale na-
ture of the problem. This is particularly true for fully
kinetic simulations, which offer a rigorous description of
collisionless reconnection but at the expense of resolving
electron spatial and temporal scales. However, the re-
cent advent of petascale computing has greatly expanded
the range of problems which are now feasible with 3D
simulations [16]. These capabilities are particularly rel-
evant to the Earth’s magnetosphere, where reconnection
is known to occur within thin current layers approaching
the ion inertial scale (see review in Ref. [17]). Interest
in understanding reconnection physics in these collision-
less regimes is further motivated by the upcoming Mag-
netospheric Multi-Scale (MMS) mission, which will pro-
vide high-resolution measurements of reconnection layers
down to the electron kinetic scales [18]. During the first
year, the orbit will be optimal for studying reconnec-
tion at the magnetopause, a current layer separating the
shocked solar wind from the magnetosphere. The rota-
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tion angle of the magnetic field across the magnetopause
varies widely, and is often significantly less than 180◦.
Along the magnetopause, there are several mechanisms
that can drive strong turbulence. First, in these guide
field geometries the tearing instability is potentially un-
stable at multiple resonance surfaces across the initial
layer [19] corresponding to oblique angles relative to 2D
models which permit only a single resonance surface. In
recent large-scale 3D kinetic simulations, this was shown
to result in a spectrum of interacting flux ropes, both
within the initial current layer and nonlinearly within
electron-scale current layers that form along separatrices
[20, 21]. The continual formation and interaction of these
structures give rise to turbulence, which is multi-fractal
[22] and dominated by coherent structures including flux
ropes and current sheets. While these predictions are
still fairly new, observational evidence has been reported
for small-scale flux ropes along the edge of the reconnec-
tion jet [23] and multi-fractal turbulence in reconnection
outflows [24]. Second, in the lower-latitude regions of the
magnetopause boundary, strong shear flows can drive the
Kelvin-Helmholtz (KH) instability leading to the wrap-
up and compression of the current layer. This can drive
reconnection along regions of the magnetopause where
it would not occur otherwise. Large-scale 3D kinetic
simulations have demonstrated these compressed regions
are unstable to the formation of numerous small-scale
flux ropes in agreement with recent spacecraft observa-
tions [25]. Over longer time scales, this so-called vortex-
induced reconnection gives rise to a strongly turbulent
boundary layer with a multitude of embedded electron
inertial scale current layers.

These recent simulations demonstrate that the devel-
opment of 3D reconnection within ion-scale current layers
will spontaneously generate turbulence with multiple in-
teracting reconnection sites. Defining and computing the
global reconnection rate in the presence of this 3D com-
plexity has posed a significant challenge. While in 2D
models, the magnetic topology and corresponding recon-
nection rate are easily computed through the flux func-
tion, the generalization of these ideas to compute 3D re-
connection rates remains an area of active research. One
straightforward practical approach is to simply evaluate
the inflow velocity of plasma into the main reconnection
site [26]. This method is appealing since it can even be
applied to spacecraft observations [17]. However, this
approach is only strictly valid for a single steady-state
reconnection site with well-defined inflow and outflow re-
gions. When there are many interacting reconnection
sites, or if the reconnection geometry deviates from the
simple 2D picture, this approach is unworkable.

Within global magnetospheric geometry, a number of
approaches have been developed [27–29] to identify mag-
netic separators - a magnetic field line connecting two
nulls and separating regions of different topologies. The
global reconnection rate then corresponds to the line in-
tegral of the parallel electric field E‖ along this sepa-
rator [30]. However, in local simulations of the magne-

topause boundary, it is not yet clear how to apply these
approaches. This is especially true for the general case
with ambient guide field which lacks magnetic nulls. In
this limit, the mapping of field lines across the system
is continuous, and true topological separatrices do not
exist [31]. Nevertheless, neighboring magnetic field lines
diverge very rapidly in certain regions as measured by
the so-called squashing factor [32–34], or the closely re-
lated Lyapunov exponent [14, 35, 36]. Recently, a method
has been proposed for computing the reconnection rate
in this limit based on a generalized flux function [13],
but so far the method has only been applied to line-tied
boundary conditions.

Another general approach for computing the 3D rate
involves integrating the parallel electric field E‖ along
all field lines to compute the quasi-potential [37]. Ap-
plying this approach to recent large-scale kinetic simula-
tions, the largest values of the quasi-potential are well
correlated with the squashing factor [38], and the in-
ferred reconnection rates [21, 38] are comparable to cor-
responding 2D simulations. While these initial efforts are
promising, there remains some ambiguity regarding the
field line integration of E‖ for these kinetic simulations.
As originally formulated [37], the integration should pro-
ceed through a non-ideal region back into an ideal region
(E‖ = 0), which is very difficult to identity due to persis-
tent temperature anisotropy in these collisionless layers
[39]. For simulations with open boundary conditions [38]
it seems reasonable to follow the integration until a field
line hits a boundary. However, for doubly periodic sim-
ulations the field lines appear to be chaotic within the
reconnection layer [21]. If there are special closed fields
lines embedded in this chaos, new algorithms would be
needed to identify and track the integrated E‖ along these
closed lines. In either case, field line integrations for the
entire volume are very expensive. In order to understand
the differences between 2D and 3D reconnection, it is
crucial to accurately compute the time evolving recon-
nection rate in a manner that is practical and robust for
large systems.

With this goal in mind, we propose an alternative
method to compute the global 3D reconnection rate by
using particle mixing as a proxy to identify the distinct
magnetic topologies. These regions are bounded by sepa-
ratrix surfaces - corresponding to the surface of field lines
that encompass flux from a single source [40]. Although
these separatrix surfaces can be identified by field line in-
tegration through the volume, this quickly becomes very
expensive for large systems. Instead, to rapidly iden-
tify these boundaries we exploit the connection between
the magnetic topology and the mixing of particles that
originate from separate sides of the current layer. Phys-
ically, this implies that the particle mixing occurs pri-
marily through the rapid parallel streaming along newly
reconnected field lines. While in principle one would use
either electrons or ions, physically one would expect this
approximation to hold much better for the electrons due
to their small gyoradius and rapid thermal motion. Of
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course, as a final sanity check one can always revert back
to magnetic field line integration to determine the sepa-
ratrix surfaces. However, for the cases presented in this
manuscript, we demonstrate that the mixing approach
accurately identifies the separatrix surfaces, thus allow-
ing us to compute the time-evolving reconnection rate in
a defensible manner.

In this manuscript, we illustrate this approach for two
of our largest 3D fully kinetic simulations performed with
the particle-in-cell code VPIC which has been carefully
optimized for petascale architectures [16]. These exam-
ples include an asymmetric current layer relevant to sub-
solar magnetopause and a current layer with Alfvénic ve-
locity shear relevant to the lower-latitude magnetopause.

II. ASYMMETRIC LAYER

At the subsolar magnetopause, observations suggest
[18] that the current layer is reasonably well approxi-
mated by an asymmetric generalization of the well-known
Harris equilibrium [41]. Here we employ a form which has
been used recently to study kinetic instabilities at the
magnetopause [42, 43]. Although not an exact Vlasov
equilibrium, the plasma is in force-balance across the
layer and in the absence of instabilities quickly relaxes
to a kinetic equilibrium.

A. Simulation Setup

The initial magnetic field profile is of the form

B(z) =

[
(B1 −B0)

2
+

(B0 +B1)

2
tanh

( z
λ

)]
x̂ +Byŷ ,

where B0 is the asymptotic field in the magnetosheath
(bottom), B1 is the magnetic field on the magneto-
spheric side (top), λ is the half-thickness of the layer
and By is a spatially uniform guide field. The equilib-
rium is supported by two components with total density
n(z) = nh(z) +nb(z). The current is carried by a Harris-
like component with density nh(z) = nc tanh(z/λ) where
nc is density at the center of the layer. The initial distri-
butions are Maxwellian with spatially uniform drift ve-
locity Uys = 2cTs/(qsBhλ), where Bh ≡ (B0+B1)/2 and
uniform initial temperature Ts for both species (s = i, e).
Pressure balance requires B2

h = 8πnc(Ti + Te) and the

resulting current density is Jy = Jc sech2(z/λ) where
Jc = cBh/(4πλ). The second component is a non-drifting
Maxwellian with density

nb(z) =
(n1 + n0)

2
+

(n1 − n0)

2
tanh

( z
λ

)
,

where n0 is the density in the magneosheath (bottom)
and n1 is the density in the magnetosphere (top). The
ion and electron temperatures are equal to the Harris
component. For normalization purposes, we employ the

reference parameters on the high-density magnetosheath
side of the layer. Thus spatial scales are normalized by
the inertial length ds ≡ c/ωps for each species where

ωps = (4πn0e
2/ms)

1/2 and time is normalized by the
cyclotron frequency Ωcs = eB0/(msc).

For this simulation, the system size is Lx ×Ly ×Lz =
85di×85di×35di with 2920×2920×1200 cells and a total
of 2 × 1012 computational particles. The half-thickness
of the initial current is λ = di, and the density change
across the layer is n1/n0 = 0.125. In the magnetosheath,
we choose βx0 = 8πn0(Ti + Te)/B

2
0 = 1, which through

force-balance implies βx1 = 0.067. With these choices,
the change in the reconnecting component of magnetic
field across the layer is

B1

B0
=

[
1 + β0

(
1− n1

n0

)]1/2
≈ 1.37 .

The ion to electron mass ratio is mi/me = 100 with tem-
perature ratio Ti/Te = 2. The ratio of the plasma fre-
quency to electron cyclotron frequency is ωpe/Ωce = 2

and the thermal speed is vthe =
√
Te/me ≈ 0.2c. The

boundary conditions are periodic in the x and y direc-
tions, while on the z-boundaries particles are reflected
and the field boundary conditions are conducting. To
initiate reconnection in a controlled manner, a magnetic
perturbation of the form

δBx = − ε
2

(
Lx
Lz

)
cos

[
2π(x− 0.5Lx)

Lx

]
sin

(
πz

wLz

)
,

δBz = ε sin

[
2π(x− 0.5Lx)

Lx

]
cos

(
πz

Lz

)
,

is imposed with ε = 0.03Bo.
In order to track mixing, the particles are tagged based

on which side of the layer they originate. Magnetospheric
particles with initial position z > 0 are designated as
the top population, while magnetosheath particles with
initial z < 0 are the bottom population. At any later time,
the velocity space moments can be computed separately
for each of these groups, as for example, the electron
density of the top ntope or bottom nbote . As reconnection
develops, these populations will interpenetrate and we
can define an electron mixing fraction within each cell

Fe =
nbote − ntope
nbote + ntope

, (1)

which will vary continuously from Fe = −1 in regions of
pure magnetospheric plasma to Fe = 1 in regions of pure
magnetosheath plasma.

B. Results

The time evolution of the current density is shown in
Fig. 1 for a 2D slice in the x-z plane at y = 0. Streamlines
of the in-plane ion flow velocity are shown as white lines,
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FIG. 1: Time evolution of the current density for an x-z plane
at y = 0. The white lines correspond to the in-plane stream-
lines for the ion flow velocity while the yellow lines correspond
to contours of the mixing fraction Fe as indicated. The cur-
rent density is normalized by Jc = cBh/(4πλ).

and two selected contours of the electron mixing fraction
are shown in yellow. Physically, these contours corre-
spond to cells where approximately one percent of the
particles originated from the opposite side of the layer.
The plasma above the Fe = −0.99 contour is purely of
purely magnetospheric origin, while the plasma below the
Fe = 0.99 contour is purely from the magnetosheath side.
As we will demonstrate later, the precise value of these
contours is not too important, since gradient in the mix-
ing fraction is extremely sharp along these boundaries.
Within 2D simulations, these simple thresholds on the
electron mixing fraction are nearly perfect markers of the
separatrices identified rigorously from the flux function
(i.e., the out-of-plane component of the vector potential
Ay). Assuming that streaming along reconnected field
lines remains the dominant mixing mechanism, one would
expect this approach to identify separatrix surfaces in 3D.

Notice that at early time in Fig. 1a, the current density
is primarily concentrated in the center of the box where
the yellow contours nearly meet at an apparent separa-
tor (i.e., the intersection of two separatrix surfaces). The
ion flow is coming into this region from the top and bot-
tom and exiting to the left and right in Alfvénic outflow

jets. At this time, the structure is quite similar to the
corresponding 2D simulation (not shown). As the evolu-
tion proceeds, the diffusion region current sheet expands
and fragments into filaments (see panel b), which we will
show correspond to flux ropes. In addition, many current
sheets form in the outflow with characteristic thickness
on the electron inertial scale. At still later time Figs. 1c-
d, additional structures associated with the turbulence
form along the magnetospheric side of the layer. These
are likely driven by the counter-streaming flow from the
reconnection jets that arises due to the periodic bound-
ary conditions. As a result of this turbulence, the yellow
mixing contours are well separated throughout the vol-
ume starting for simulation times tΩci >∼ 70. This implies
that the separatrix surfaces no longer intersect along a
single line. At these late times, the flow pattern from
the bottom side into the central diffusion region remains
coherent and well directed, while the flow pattern on top
side of the layer is irregular and dispersed.

The three-dimensional structure for this simulation is
illustrated in Fig. 2 at late time tΩci = 100 when the
turbulence is well-developed and a substantial gap exists
between the upper and lower separatrix surfaces. The
structure of the current in the interior is visualized with
an isosurface of the current density. Notice that the
main current sheet is in the center of the domain and
is predominantly aligned in the y-direction. However, it
is highly filamented and has formed oblique flux ropes
as illustrated by the sample magnetic field lines (green).
These flux rope structures form along the bottom (mag-
netosheath) separatrix in a manner similar to previously
reported results for symmetric guide field regimes[20],
where oblique flux ropes were observed along the high-
density legs of the separatrices. However, for the present
asymmetric layer there is a strong left/right asymmetry
in the development of these flux ropes - i.e., the flux ropes
are only observed along the right outflow. The reason
appears to be straightforward. In symmetric guide field
regimes, reconnection gives rise to high and low density
separatrices, with the most intense current sheets form-
ing along the high-density separatrices. Within asym-
metric layers, this basic effect combines with the inherent
density asymmetry across the sheet and selects one leg
of the separatrix where the most intense current sheets
form. Not surprisingly, this same result is also observed
in 2D simulations (not shown), but the thin layers remain
structurally stable since a resonance surface does not ex-
ist in 2D [20]. Within the outflow region, the plasma is
quite turbulent with an assortment of electron inertial
scale current structures.

The one-dimensional energy spectrum of the magnetic
field is shown in Fig. 3 for the same time tΩci ≈ 100
as Fig. 2. This spectrum was computed assuming that
the mean field direction is determined by the uniform
guide field. However, the local field direction is actu-
ally rotating by 90◦ across the reconnection layer. The
red curve is the energy spectrum from a single time
slice at tΩci ≈ 100.5, while the blue curve was ob-
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FIG. 2: Turbulent three-dimensional structure at time tΩci ≈ 100 showing the current density around the perimeter of the
simulation volume along with contours of the electron mixing fraction Fe as indicate (yellow lines). In the interior, an isosurface
of current density (red) is shown along with a few sample magnetic field lines (green) to illustrate the formation of flux ropes.

tained by time averaging the magnetic field over the in-
terval tΩci ≈ 99.7 → 100.5 using 40 equally spaced time
slices. This time averaging tends to suppress the short-
wavelength particle noise, but otherwise does not alter
the rest of the spectrum. At longer wavelength, these re-
sults feature a clear power law with spectral index k−2.7⊥
in the range k⊥di ∼ 1 along with a gradual steepening
for shorter wavelengths. While these 3D kinetic simula-
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FIG. 3: Energy spectrum of the magnetic field corresponding
to simulation shown in Fig. 2. The red curve is based on a
single time slice at tΩci ≈ 100.5, while the blue curve was
obtained by averaging the magnetic field over the interval
tΩci ≈ 99.7→ 100.5 using 40 equally spaced time slices.

tions are too small to permit an inertial range, the kinetic
scale turbulence that is generated during reconnection
compare favorably with spacecraft observation of recon-
nection jets in the Earth’s magnetotail [44] as well as
observation of turbulence in the solar wind [45, 46], and
recent kinetic simulations of flow driven turbulence [47].

For the purpose of this manuscript, we are primarily
interested in measuring the influence of this turbulence
on the global reconnection rate - i.e., the rate at which
flux is transferred between the smooth upstream region
in Fig. 1 into the mixed region. To proceed in this direc-
tion, it is important to characterize the structure of the
magnetic field. In stochastic 3D magnetic fields, neigh-
boring field lines undergo rapid spatial separation which
can be characterized by the squashing factor [32–34], or
the closely related Lyapunov exponent [14]. A flux tube
with small but finite radius a0 at ` = 0 will map to an
ellipse at ` = Ly. To preserve the flux within the tube
requires πB0(`)ab = πB0(0)a20 where a and b are major
and minor axes of the ellipse and B0(`) is the magnitude
of the magnetic field along the central field line. Over
longer distances the enclosed shape will become highly
distorted as illustrated in the classic paper by Rechester
and Rosenbluth [48]. Following the notation in Ref. [14],
we can define the exponentiation factor σ for the map-
ping

a

b
≡ e2σ(`) ≈

(
a

a0

)2

, (2)
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FIG. 4: Field line exponentiation factor σ as defined in Eq. (2) at time tΩci = 100 for the two x-z cross sections indicated: (a)
y = 42.5di and (b) y = 0. The integration length along each field line is ` = Ly = 85di. The solid black lines correspond to
contours of the electron mixing fraction Fe as indicated.

where the final equality assumes that B0(`) is weakly
varying, which is true in the presence of an ambient guide
field. In the limit a � b, the ratio a/b is equivalent to
the squashing factor [32–34], while the quantity σ mea-
sures the maximum separation of neighboring field lines
relative to an initial small separation a0. To calculate
σ from the simulation, we employ a spatial grid of seed
points in the x-z plane and follow field line trajectories
a distance Ly to compute the mapping between initial
and final coordinates x→ X. The Jacobian for this map
J = ∂X/∂x is used to form the symmetric displacement
tensor D ≡ JJ T and the field line exponentiation factor
is given by

σ = ln(ρ1/2max) , (3)

where ρmax is the maximum eigenvalue of D.
The resulting values of σ for this simulation are shown

in Fig. 4 at time tΩci = 100 for two x-z cutting planes
through the 3D volume in Fig. 2. The top panel corre-
sponds to a slice through the center of the domain, while
the bottom panel is along the edge. In each case, the solid
black lines correspond to contours of the electron mixing
fraction Fe as indicated. Notice that σ is quite small
above the Fe = −0.99 contour and below the Fe = 0.99
contour, indicating that neighboring magnetic field lines

remain close when mapped across the system. However,
there is a rapid increase in σ across these boundaries and
the interior region of mixed plasma is clearly associated
with a chaotic 3D magnetic field, with peak values of the
exponentiation factor approaching σ ≈ 8. The bound-
ary of increasing σ is for the most part well-correlated
with the contours of the mixing fraction Fe, suggesting
these may indeed correspond to topological boundaries.
In order to further verify this idea, we traced field lines
through the system ten times for seed points above and
below these apparent topological boundaries. For seed
points in the small σ regions, the field lines stay on the
same side of the layer and are well-organized into ap-
parent flux surfaces, while for seed points in the large σ
region the field lines quickly spread throughout the mixed
volume (see animation in Ref. [49]).

These results imply that the magnetic field is com-
prised of three topological regions. In the top and bot-
tom regions, the magnetic field lines remain on the same
side of the layer and the flux surfaces are well-defined. In
the central region, the magnetic field lines are stochasti-
cally mixed across both sides of the layer. The mixing
fraction of electrons then closely mirrors these topologies
and can be used to rapidly infer the separatrix surfaces
between the mixed and unmixed regions. In the magne-
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tosphere, there may be other observational signatures of
these separatrix surfaces, such as the sudden drop-out of
the high-energy magnetospheric electrons often observed
across the magnetopause.

Given these topological regions identified in Fig. 4, it
is now straightforward to evaluate the global reconnec-
tion rate by tracking the time evolution of magnetic flux
within the top and bottom regions, which contain the
flux responsible for driving reconnection. The basic idea
is illustrated in Fig. 5 which shows the 3D structure of
the separatrix surfaces using translucent isosurfaces of
the electron mixing fraction. Two example flux loops are
shown for the top region at x = x′ and x = Lx. The
magnetic flux through an arbitrary loop at x′ is given by

Φ1(x′) ≡
∫

B · dA ,

and likewise for the flux Φ0(x′) through the equivalent
loop on the bottom side (not shown). If these surfaces
identified by the electron mixing fraction correspond to
the true separatrix surfaces, then the fluxes Φ1(x′) and
Φ0(x′) will not depend on the choice of x′ and the re-
connection rate will not depend on which loop we con-
sider. Thus evaluating the fluxes for the entire range of
x′ = 0→ Lx will give an error estimate for the rate.

To relate this approach back to the electric field, con-

sider Faraday’s law applied to one of these loops

dΦ

dt
= −c

∮
E · ds = −c

∫ s1

s2

E · ds , (4)

as indicated in Fig. 5. Note that along z-boundary
(s3 → s4) the transverse electric field vanishes due to
the conducting boundary conditions, while the contribu-
tion from s2 → s3 cancels the contribution from s4 → s1
due to the periodic boundary condition in the y-direction.
Thus the time changing flux through the loop is equal to
the line integral of the electric field along the separatrix
surface. In general this path does not correspond to a
field line, except at early times in the simulation when
the two separatrix surfaces very nearly intersect along
what appears to be a separator (i.e., the magnetic field
line common to both surfaces). During this phase, the
reconnection rate must be the same for the top and bot-
tom regions Φ̇1 = Φ̇0 and is equal to the line integral of
the parallel electric field along the separator. However, at
later times when a turbulent gap opens between the two
separatrix surfaces, it is no longer possible to offer this
simple interpretation and furthermore there is no reason
why the reconnection rates must be the same in the top
and bottom regions.

In order to facilitate direction comparison with the
equivalent 2D simulation, we define the normalized re-
connection rate based on the flux per unit length in the
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FIG. 6: Rate computed from Eq. (5) based on the top
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|Fe| = 0.99 to fined the separatrix surfaces. Grey triangles
are the inflow rates in Eq. (6) applied to the bottom region.
The black curve is the 2D reconnection rate measured from
the flux function Ay, while the green crosses are the 2D rate
obtained from the mixing approach with |Fe| = 0.99. Bottom
panels show time evolution of the (b) magnetic field energy,
(c) electron and (d) ion kinetic energies for the 3D (red) and
2D (blue) simulations. In the magnetic field energy, the por-
tion associated with the external guide field has been removed,
and the kinetic energies are normalized to their initial value.
The total energy for both cases increased by 3% due to nu-
merical heating in the electrons. This numerical heating was
subtracted from results shown in panel (c).

y-direction

R =
1

B0VALy

dΦ

dt
, (5)

where VA = B0/(4πn0mi)
1/2 is the Alfvén velocity based

on the initial magnetic field and density on the bottom
side of the layer. To estimate the errors arising from
using Fe to identify the separatrix surfaces, the recon-
nection rate obtained from Eq. (5) is evaluated for 73
equally spaced flux loops between x′ = 0 → Lx on both
the top and bottom. The simulation time slices were
separated by ∆tΩci = 4 and second order central differ-
encing was used to evaluate Φ̇. In order to identify the
separatrix surfaces, we typically employ a mixing frac-
tion of |Fe| = 0.99. However, as shown in Appendix A,

the reconnection rate is not very sensitive to this choice
over the range Fe = 0.90→ 0.995.

The resulting reconnection rate for this simulation is
shown in Fig. 6a for the top (red) and bottom (blue) re-
gions. The solid line is the average value from the 73 flux
loops, while the error bars correspond to the standard de-
viation. The estimated uncertainty from this approach is
typically 5-10%, which should be sufficiently accurate for
most purposes. The average between the top and bot-
tom rates is shown in purple while the black line is the
reconnection rate obtained from a corresponding 2D sim-
ulation with the same physics parameters. For this 2D
simulation, the reconnection rate was computed directly
using the flux function in the same manner as typically
done in periodic simulations [50]. As a consistency check,
we also computed the reconnection rate for this 2D case
using Eq. (5) with mixing fraction |Fe| = 0.99 to de-
termine the separatrices. Notice that the results (green
crosses) are in nearly perfect agreement with the rate ob-
tained from the flux function, confirming the validity of
this approach. In this 2D run, the separatrices on the
two sides of the layer always intersect at the x-line, and
as a result the rate obtained from the mixing fraction
remains the same on both sides.

To elucidate the relationship between Eq. (5) and com-
monly employed inflow estimates of the reconnection
rate, consider a flux loop in Fig. 5 located at x′ = Lx/2
near the dominant inflow. If the separatrix surface along
this loop is not highly structured, we can close the loop
by drawing a straight line from s1 → s2. When this ap-
proximate path is not too different then actual path, we
can combine Eqns. (4)-(5) to obtain

R ≈ c〈Ey〉
B0VA

≡ 〈Uin〉
VA

, (6)

where 〈 〉 is the average along the straight line (s1 → s2)
and Uin ≈ cEy/B0 is the approximate inflow velocity
assuming that the upstream magnetic field Bx remains
close to the initial asymptotic value B0. The grey tri-
angles in Fig. 6b correspond to Eq. (6) for the bottom
region, where a coherent inflow is observed throughout
the evolution (see Fig. 1). Not surprisingly, the estimate
in Eq. (6) is roughly correct, and the physical connec-
tion back to plasma inflow is clear. However, note that
Eq. (6) is highly inaccurate on the top boundary (not
shown) for times tΩci > 60 as the separatrix surface be-
comes corrugated, and many smaller inflow and outflow
regions develop.

These 3D reconnection rates (both top and bottom)
are in very good agreement with the 2D result up until
tΩci ≈ 60. At later times, the rate in the top region is
significantly enhanced while the rate in the bottom region
continues to track the 2D result. One obvious question
is whether this enhanced 3D reconnection rate modifies
either the energy conversion timescale or the partitioning
of energy between electron and ions. Surprisingly, these
changes are far more subtle. The rate of decrease in
the magnetic field energy (see Fig. 6b) becomes slightly
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faster at the same time tΩci ≈ 65 that the reconnection
rate is enhanced. This small additional heating goes to
the electron kinetic energy Ee as shown in Fig. 6c, while
the ion kinetic energy Ei evolution is nearly identical to
the 2D case as shown in Fig. 6c.

The physics responsible for this enhanced rate in the
top region is not yet well-understood. However, the en-
hancement is clearly correlated with the development of
vortex tubes along this boundary, which appear to be
driven by the recirculation of the reconnection outflow
jets. At the magnetopause, this type of interaction be-
tween reconnection outflows may occur commonly due
to the presence of multiple active x-lines, as reported in
recent observations [51]. Within 2D models, it is ener-
getically more difficult for the reconnection outflows to
generate vortices, since it is necessary to wrap-up the in-
plane component of the magnetic field (i.e., which is sta-
bilizing to Kelvin-Helmholtz type instabilities). However,
in 3D the wavevector for the perturbation can rotate to
an oblique angle in order to minimize the energy penalty
associate with generating a vortex tube. These oblique
vortex tubes along the top boundary cause the separa-
trix surface to become highly corrugated with many cusp
like regions (see Fig. 4) associated with the rollup, which
may in turn cause local shearing of the magnetic field
and small-scale reconnection in each cusp. In addition,
a turbulent mixed region (or gap) is observed to form
along the entire spatial extent in the x and y-directions,
so that the separatrix surfaces no longer intersect.

These results suggest that mixing of field lines across
the layer is more easily modified by the 3D dynamics than
the physics responsible for the energy conversion. In the
following section, we will consider this issue further for a
case where the turbulence is driven even more strongly
by a pre-existing flow.

III. VORTEX-INDUCED RECONNECTION

Along the lower-latitude flank regions of the magne-
topause boundary, there is strong velocity shear which
can drive the Kelvin-Helmholtz (KH) instability as shown
by spacecraft observations [52, 53]. Two-dimensional
simulations have demonstrated that KH can compress
the magnetopause current layer and drive reconnection in
regions where it would not normally occur [54–57]. This
vortex-induced reconnection has important implications
for mixing across the magnetopause. Recently, the first
3D fully kinetic simulations of this process have demon-
strated the formation of small-scale flux ropes around
the perimeter of the vortices, leading to a complicated
evolution in which reconnection and the flow turbulence
are coupled [25]. In contrast to the example in Sec. II,
computing the reconnection rate in these regimes is much
more difficult even with 2D models due to the large num-
ber of interacting magnetic islands within the flow vor-
tices. As a result, there is not a single large-scale coherent
inflow and outflow, but rather many smaller scale recon-

nection sites which vary rapidly in space and time. Thus
estimating the reconnection rate based on the inflow is
not workable. For clarity, we first give a brief description
of the setup and refer interested readers to Ref. [25] for
further details of this simulation and comparisons with
spacecraft observations.

A. Simulation Setup

The initial condition is a modified Harris-type layer
with magnetic field B(z) = B0 tanh(z/λ)x + Byy where
λ = 2di is the half-thickness of the layer and By = 5B0

is a uniform guide field. The plasma is composed of two
components with total density n(z) = nhsech2(z/λ) +n0
where n0 is the uniform background density and nh =
0.08n0 is the central density for the Harris-type com-
ponent which supports the current Jy = Jc sech2(z/λ)
where Jc = cB0/(4πλ). To form the velocity shear layer,
particles are initialized with a drifting Maxwellian dis-
tributions with bulk velocity Vx = V0 tanh(z/λ). The
temperature is uniform with Ti/Te = 3 and the mass ra-
tio is mi/me = 25. We normalize all quantities using the
background density n0 and the reconnecting component
of the magnetic field B0. With this choice, the other
simulation parameters are ωpe/Ωce = 8, vthe/c = 0.15,
V0 = 7VA and βx0 = 8πn0(Ti + Te)/B

2
0 = 12.5. The

system size is Lx × Ly × Lz = 60di × 30di × 40di with
2048 × 1024 × 1368 cells and a total of 0.7 × 1012 com-
putational particles. As described in Ref. [25], the size
of the simulation was chosen to allow two wavelengths
of the most unstable KH mode. The boundary condi-
tions are periodic in the x and y-directions, while on the
z-boundaries particles are reflected and the field bound-
ary conditions are conducting. A small perturbation is
added to the velocity to initiate the development of the
KH instability as described in Ref. [25]

B. Results

The overall time evolution for this simulation is illus-
trated in Fig. 7 for x-z planes located at y = 0 in the
3D volume. The left panels show the time evolution of
the exponentiation factor σ computed by integrating for
a distance ` = Ly = 30di along each field line, while right
panels show the evolution of the current density. In both
cases, the black lines show the contours of electron mix-
ing fraction Fe = 0.99 and Fe = −0.99 as indicated. As
shown in Figs. 7a-b, the initial nonlinear evolution of the
two KH vortices leads to the stretching of the in-plane
field and the generation of intense current layers, which
are unstable to a spectrum of tearing instabilities [25].
As reconnection develops in these thin layers, the mixed
region rapidly expands and becomes turbulent. This flow
driven turbulence continues to generate new thin current
layers throughout the mixed volume (determined by Fe),
which gradually expands outward in the z-direction. In
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FIG. 7: Time evolution of vortex-induced reconnection showing the field line exponentiation factor σ (left panels) and the
magnitude of the current density (right panels) normalized to the initial value Jc = cB0/(4πλ) for x-z slices at y = 0. The
integration length along each field line is ` = Ly = 30di. The black lines correspond to contours of the electron mixing fraction
Fe = 0.99 and Fe = −0.99 as indicated.

the final stage, the two primary vortices undergo merging
as the volume of mixed field lines (and plasma) continu-
ally increases [see panels (g)-(h)]. Throughout this evolu-
tion, the structure of the magnetic field as characterized
by σ is chaotic within the mixed volume, with the excep-
tion of the interior region of the vortices, where the flow
shear is weak and the resulting field structure remains
simple. Notice that the regions with largest σ are well
correlated with the most intense current sheets. However,
while the spatial thickness of the current sheets range
from di down to a few de, the thin ribbons of strong σ are
much thinner, since σ is not limited by any kinetic scale.
The volume of chaotic magnetic field measured by σ re-
mains generally well-correlated with the volume of mixed
plasma determined by the mixing fraction Fe. This cor-
relation supports our interpretation of these boundaries
as separatrix surfaces.

To further test this idea, field lines were traced through

system 32 times to create a rough Poincaré map as shown
in Fig. 8. The green field lines correspond to a small
group of seed points placed near x = Lx/2 above the Fe
contour. Notice these green lines remain in this upper re-
gion and are well-organized into apparent flux surfaces.
In contrast, two small groups of seed points were placed
inside the mixed region near the vortex edge (black) and
near the flow stagnation region (yellow). Within a few
passes through the system, these field lines are connected
to large regions of the mixed volume. Furthermore, while
these field lines approach the threshold contours of the
electron mixing fraction Fe = 0.99 and Fe = −0.99 as
indicated, they do not cross into the upper and lower
regions. This is a clear demonstration that these bound-
aries identified by the mixing fraction indeed correspond
to topological boundaries of the magnetic field (i.e., sep-
aratrix surfaces), and that mixing of magnetic field lines
across the layer proceeds in tandem with the mixing of
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Fe = −0.99 boundary, (2) black corresponds to seed points
at the edge of the vortex, and (3) yellow corresponds to seed
points near the stagnation region between vortices.

particles.

The one-dimensional energy spectrum of the magnetic
field is shown in Fig. 9 at time tΩci = 105 after the merg-
ing has occurred between the two initial vortices. This
spectrum was computed in the same manner as Fig. 3
by assuming that the mean field direction is determined
by the guide field. This approximation is better justi-
fied for this simulation since the guide field is initially
5× stronger then the reconnecting field. However, as the
simulation proceeds the in-plane field is amplified by the
flow and at the time shown in Fig. 9 the guide field is
only ∼ 2× stronger then the peak in-plane fields. The
spectrum shown in Fig. 9 features a power-law for longer

wavelengths with spectral index ∼ k
−5/3
⊥ , followed by a

pronounced steepening for shorter wavelengths k⊥de >∼ 1.

The time evolution of the reconnection rate was com-
puted by evaluating Eq. (5) for 64 equally spaced flux
loops between x′ = 0→ Lx on both the top and bottom,
in the same manner as illustrated conceptually in Fig. 5.
The average reconnection rate is shown in Fig. 10a for
the top (red) and bottom (blue) regions, while the er-
ror bars correspond to the standard deviation, and the
green curve corresponds to the average between the two
regions. To compute the time derivative of the flux Φ̇,
time slices separated by ∆tΩci = 4 were used with second
order central differencing. For comparison, the reconnec-
tion rate in the corresponding 2D simulation (black) is
also computed using the mixing approach, since track-
ing the flux function is prohibitively difficult for these
regimes. In both cases, the first burst of reconnection
associated with the formation of the initial vortices oc-
curs between tΩci = 20 → 40 with the peak 3D rate
R ≈ 0.32 nearly 20% larger than in 2D. During the inter-
val tΩci = 40→ 75, the 2D rate R ≈ 0.02 remains much
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FIG. 9: Energy spectrum of the magnetic field fluctuations at
time tΩci = 105 for the simulation of vortex-induced recon-
nection.

smaller than the 3D rate R ≈ 0.06.

Notice that the 3D rates on the top and bottom are
equal within the error bars up through tΩci ≈ 75 where
the vortex merging is starting (see Fig. 7ef). During the
coalescence of these vortices, a new thin current sheet is
formed in the 2D simulation (see Ref. [25]) which pro-
duces a strong burst of reconnection at time tΩci ≈ 90
in Fig. 10a. In contrast, the 3D simulation features a
broader turbulent layer at late time. As a result, the
second burst in reconnection is much weaker along the
bottom boundary and is not apparent at all along the
top boundary. To estimate the sensitivity of the aver-
age 3D rate to the threshold on Fe, the electron mixing
fraction was varied over the range Fe = 0.90→ 0.995 as
shown in Appendix A. As before, the reconnection rate
is insensitive to the specific choice of Fe.

While the error bars in these 3D reconnection rates are
somewhat larger in Fig. 10a than in the previous exam-
ple, they are still sufficiently small to illustrate some im-
portant qualitative and quantitative differences. In par-
ticular, the initial burst of reconnection is clearly more
effective in 3D and this is followed by a turbulent evolu-
tion in which the rate proceeds significantly faster than
in 2D. As a result, the late time burst of reconnection is
far less than in the 2D simulation.

Assuming these trends hold for larger systems, the 3D
evolution may proceed by a continual turbulent mixing,
while the 2D evolution will remain bursty. Note that
within the 2D simulation, localized reconnection can pro-
ceed within a current sheet only when the in-plane field
across the sheet reverses sign. Thus many thin sheets will
remain stable to reconnection within 2D. In contrast, in
3D tearing perturbations can rotate to an oblique an-
gle [20, 25] and it is easier for reconnection to proceed in
nearly any extended layer. As a consequence, it is harder
for the 3D simulations to maintain stressed regions in
the same manner as in 2D. This physics is apparent in
Fig. 10b, which compares the time evolution of the mag-
netic energy between 2D and 3D. Consistent with the
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gions and assuming |Fe| = 0.99 to determine the separatrix

surfaces. The green curve is from the average (Φ̇0 + Φ̇1)/2
while the black curve is the reconnection rate from the corre-
sponding 2D simulation measured directly using the mixing
approach with |Fe| = 0.99. Bottom panels show time evolu-
tion of the (b) magnetic field energy and (c) electron and ion
kinetic energies for the 3D (red) and 2D (blue) simulations.
In the magnetic field energy, the portion associated with the
external guide field has been removed, and the kinetic energies
are normalized to their initial value.

above argument, more magnetic energy is accumulated
in the 2D case at late time tΩci > 70, as the flow drives
additional wrapping of the in-plane field associated with
vortex merging.

In contrast to example in Sec. II which was driven by
the magnetic shear, this simulation is really driven by
the ion flow which continually pumps energy back into
the magnetic field. Through the simulation the energy
in the flow is much larger than the magnetic field (ex-
cluding the external guide field). Thus while the small
differences in the magnetic field evolution in Fig. 10b
are interesting, this does not significantly alter the evo-
lution of either the electron or ion energy, as shown in
Fig. 10c. Together with the previous example in Sec. II,
these results imply that the 3D turbulence can influence
the mixing of magnetic field lines and particles across the
layer, but does not substantially alter the energy conver-
sion time scales.

IV. SUMMARY

The influence of three-dimensional dynamics and tur-
bulence remains one of the most challenging problems in
reconnection physics. Recent advances in computing are
permitting 3D kinetic simulations in which turbulence
is generated spontaneously within initially laminar cur-
rent layers. For the examples shown here relevant to the
magnetopause, the turbulence is driven by the combined
influence of magnetic and/or velocity shear, and is domi-
nated by coherent structures including flux ropes, current
sheets and flow vortices. The resulting magnetic field
quickly becomes chaotic within the reconnection layer
and outflow regions, and thus integrating the parallel
electric field to compute the reconnection rate [37, 38]
is challenging.

In this paper, we propose an alternative approach for
computing the reconnection rate, which relies upon the
mixing of electrons to rapidly identify the magnetic topol-
ogy of the layer. The basic idea is simple and physically
well-motivated. Particles originating from separate side
of the layer are tagged, so that we can compute the sub-
sequent evolution of the mixing fraction. We have shown
that a simple threshold on the electron mixing fraction
Fe can be used to approximately identify the separatrix
surfaces - corresponding to the surface of field lines that
encompass flux from a single source. These separatrix
surfaces divide the field lines into three topologies: (1)
an upper region with smooth magnetic field, (2) a cor-
responding lower region with smooth field and (3) a tur-
bulent region in which both the field lines and particles
are mixed. Within this mixed region, the magnetic field
is chaotic as shown by the field line exponentiation fac-
tor σ. The separatrix surfaces inferred by a threshold
on the mixing fraction Fe are well-correlated with re-
gions where σ becomes large. As a final check, we have
verified these topologies directly by integrating magnetic
field lines many times through the system to create an
approximate Poincaré map. However, we note this can
only be done for simulations with periodic boundary con-
ditions, while the idea of using mixing to identify sepa-
ratrix surfaces is more general and could in the future be
applied to open systems as well.

While integrating the magnetic field lines to determine
topology is very expensive, the approximate approach
based on mixing is obtained automatically as part of the
kinetic simulation. This permits the time evolution of
the magnetic flux to be tracked separately within the up-
per and lower regions, which contain the flux driving the
reconnection. The uncertainties in this approach due to
the differences between the exact separatrix surfaces (de-
termined by field topology) and the approximate surfaces
(inferred by Fe) can be estimated by tracking the flux for
a range of loops as illustrated in Fig. 5. For the asym-
metric layer shown in Sec. II, the error bars are typically
5-10% while for the vortex-induced reconnection setup
shown in Sec. III the errors are somewhat larger.

The key physical assumption implicit in this approach
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is that mixing proceeds primarily through the parallel
streaming of particles along newly reconnected field lines.
Due to their small gyroradius and rapid thermal motion,
electrons give a better approximation than ions. How-
ever, we have verified that the ion mixing fraction gives
very similar rates, but with larger error bars correspond-
ing to bigger uncertainties in the location of the sepa-
ratrix surfaces. For the two examples shown here, the
plasma is laminar in the upstream regions and magnetic
field is well-organized into flux surfaces. It is not clear
that the present method would work in the presence of
a strong pre-existing turbulence in the upstream region,
since it may no longer be possible to define separate mag-
netic topologies (i.e., the field lines may be chaotically
mixed in the entire domain). Another limit in which
the method will likely break down is due to the pres-
ence of strong electrostatic turbulence that causes parti-
cle mixing to occur separately from field line mixing. In
this limit, one could still track the evolution of the flux,
but the separatrix surfaces would need to be determined
by field line integration rather than through the particle
mixing.

The two examples simulations used to illustrate this
approach feature a number of interesting differences in
the reconnection rate associated with the development of
kinetic turbulence. For the asymmetric layer shown in
Sec. II, the 3D reconnection rate is in good agreement
with the corresponding 2D simulation up until the point
when reconnection outflow begins to drive vortex tubes
along the upper separatrix surface. As shown in Fig. 6,
this leads to a ∼ 70% enhancement of the reconnection
rate associated with this upper region. In a similar man-
ner, the case of vortex-induced reconnection in Sec. III
is dominated by strong Alfvénic shear flow throughout
the evolution, leading to significant differences as illus-
trated in Fig. 10. After the initial strong burst of recon-
nection, the development of 3D turbulence largely sup-
presses the bursty behavior observed in 2D simulations,
and gives rise to a continual mixing of particles and field
lines across the layer. Thus it appears the 3D evolution
is qualitatively different than observed in 2D.

Despite these differences in the reconnection rate, the
time evolution of the energy conversion rates are remark-
ably similar to the corresponding 2D simulation for both
of the examples shown in this paper. This clearly il-
lustrates that there is not a one-to-one relationship be-
tween the reconnection rate and the energy conversion
rate. This is true even within 2D, but is particularly ap-
parent in these 3D simulations. If magnetic reconnection
is defined based on the mixing of flux between distinct
magnetic topologies, it is possible for enhanced mixing of
the field lines to occur without enhanced energy conver-
sion. While many applications of reconnection involve a
bursty release of energy (solar flares, magnetospheric sub-
storms, sawtooth oscillations, etc.) in some applications
the mixing of plasma from different sources is equally im-
portant, as for example, the entry of solar wind plasma
into the magnetosphere. While this initial study only
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induced example in Sec. III.

considered two cases, the results suggest that 3D dynam-
ics and turbulence can enhance the mixing of field lines
(and particles) between topologies, but that modifying
the basic energy conversion time scale is much harder in
these kinetic regimes.

Appendix A: Sensitivity to Mix Fraction

In order to estimate the sensitivity of this approach,
the threshold on the electron mixing fraction was varied
over the range Fe = 0.90 → 0.995 as shown in Fig. 11a
for the asymmetric reconnection layer in Sec. II and in
Fig. 11b for the vortex-induced example shown in Sec. III.
In both cases, these results demonstrate that the gradient
in the mixing fraction is very steep near these bound-
aries, and thus the reconnection rate is insensitive to
the specific choice. Since these simulations typically em-
ploy Np ∼ 100 particles per cell, a physically reasonable
threshold should be in the range |Fe| ≈ 1− 1/Np
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