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  Current understanding is based mostly on 2D 
simulations.  How does reconnection really work in 3D?

 Influence of turbulence ?   Chaotic 3D magnetic fields?  

 Do these effects fundamentally alter reconnection?

 Role of kinetic effects in collisionless regimes?

 System size dependence     Large vs asymptotically large?

 Earth’s magnetosphere is a nice reality check

Major Uncertainties in Reconnection ?

Matthaeus & Lamkin, 1985,1986
Lazarian and Vishniac, 1991
Kim & Diamond, 2001
Kowal et al, 2009
Loureiro et al, 2009

Eyink, Lazarian & Vishniac, 2011
Guo, Dimond & Wang, 2012
Eyink et al 2013
Boozer 2012, 2013



Magnetic Reconnection in the Magnetosphere
  Onset occurs in ion-scale current layers

  Nonlinear evolution produces electron layers

  Electron physics is a main focus of MMS mission

  Layers potentially unstable to: tearing → islands, 
+velocity shear & streaming instabilities ... 

  Tearing islands from 2D are really flux ropes in 3D 
which can interact and drive turbulence

  We are studying these issues with large-scale 
kinetic simulations - both hybrid and fully kinetic

  Influence on reconnection rate & mixing ?
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Mechanisms to Drive Turbulence at Magnetopause

Magnetic Shear
Tearing  

Velocity Shear
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Fig. 1. Diffusion of magnetic field lines through the MBL. (a) All magnetic surfaces within the MBL are 
destructed. The stochastic wandering of magnetic field lines through the layer results in magnetic 
percolation. Bold solid curve - the magnetic field line penetrating from the magnetosphere to the 
magnetosheath. (b) A region with stable magnetic surfaces exists within the MBL. The stochastic wandering 
of magnetic field lines does not result in percolation if the width of this region is larger than b~o. The 

topological connection of magnetic field lines on both sides of the MBL is absent. 

the entire MBL. Taking into account the stochastic nature of the process, this 

terminology seems to be even more appropriate for the phenomena under discussion 

than the sometimes misleading use of such words as 'merging' or 'reconnection'. As will 

be shown in Appendix 2 (see also Biscamp, 1977; Swartz and Hazeltine, 1984; Galeev 

et al., 1985) the growth of magnetic islands saturates rather quickly at a finite island 

width W*. So, if even a very narrow region (but wider than W*) with stable magnetic 

surfaces exists within the plasma layer it cannot be overlapped by nearby growing 

magnetic islands and thus it appears to be impenetrable for the diffusing field lines. One 

can come to the conclusion that the necessary condition for magnetic percolation to 

occur through the MBL will be the destruction of almost all magnetic surfaces within 

it. Figure l(a) schematically shows the stochastic diffusion of magnetic field lines 

through the destructed MBL. The process of magnetic field stochastic wandering will 

be interrupted if a region (even a thin region) with the smooth, well-defined magnetic 

surfaces exists within the MBL. This case is shown in Figure l(b) where there is no 

topological connection of magnetic field lines on both sides of MBL, and so 

reconnection (in a global or macroscopic sense) is absent (despite the possible observa- 

Galeev et al, 1986Daughton et al, 2011
Liu et al, 2013 Karimabadi et al, PoP, 2013
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How to compute 3D reconnection rate?
d�

dt
/

Z s2

s1

Ekds

 Find topological separators

Dorelli & Bhattacharjee, 2009
Haynes & Parnell, 2010
Komar, Cassak et al, 2013                

Global 
Magnetosphere

Olson & Dorelli ..., 2014Local Kinetic
Simulation ? 

Wendel et al., 2013                Open BC

Yi-Hsin Liu, et al., 2013           Double Periodic

Finn et al., 2013                     Line-tied

 GMR = Generalized Magnetic Reconnection,   Hesse et al., 2005

 Generalized Flux Function -  Yeates & Hornig, 2011



Mixing of magnetic 
field lines 

Mixing of electrons
across layer
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Separation of magnetic field lines
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(Dated: August 9, 2012)

The rate of di↵usion across magnetic field lines and the rate of reconnection of magnetic field lines
themselves are exponentially, e2�(`), enhanced when the separation between neighboring magnetic
magnetic field lines increases exponentially, e�(`), with distance along the lines. A coordinate system
will be defined in the neighborhood of an arbitrary magnetic field line and used to clarify when
neighboring field lines exponentiate apart. To enhance di↵usion rates by factors of 108 to 1016

requires the number of exponentiations � to reach a number in the range of 10 to 20. When the
number of exponentiations � is large, the number of exponentiations will be shown to be given by
� ⇡ kqL, where kq ⇠ µ0j/B and L is the distance along the field lines over which the current density
has the intensity j. Consequently, only a modest enhancement, ⇠ �, of the current density from its
characteristic value µ0j = B/L is required to achieve rapid cross field di↵usion and reconnection.

I. INTRODUCTION

A magnetic field line is defined as a solution to three
coupled ordinary di↵erential equations that can be writ-
ten in vector form as

d~x

d`
= b̂(~x), (1)

where ` is the distance along a field line and b̂ is the unit
vector along the magnetic field, b̂ ⌘ ~B/| ~B|.

The separation ~� ⌘ ~x(`) � ~x0(`) of a neighboring
magnetic field line from an arbitrarily chosen field line
~x0(`), can be determined by writing Equation (1) as
d(~x0 + ~�)/d` = b̂(~x0 + ~�). In the limit as |~� ! 0|, two
equations are obtained: one is for a central magnetic field
line d~x0/d` = b̂(~x0) and the other is a linear equation for
the separation ~�(`),

d~�

d`
= ~� · (~rb̂)~x0 . (2)

The 3 ⇥ 3 matrix or tensor ~rb̂ is evaluated along the
trajectory ~x0(`) of the central magnetic field line. Since
Equation (2) is a linear equation, the magnitude of the
separation |~�0| ⌘ |~�(0)| at ` = 0 is irrelevant for calculat-
ing the number of exponentiations �(`) ⌘ ln(|~�(`)|/|~�0|).

When the separation ~� between neighboring magnetic
fields increases exponentially in magnitude, the rate of
magnetic reconnection [1–4] or of di↵usion across the
magnetic field lines can be enhanced by a factor exp(2�).
As will be shown, an enhancement of 1010 or more can
be achieved when the current density normalized by the
magnetic field strength reaches a level � ⇠ Lµ0j/B >⇠ 10,
where L is the length of a typical magnetic field line in
the reconnection or di↵usion region.

The enhancement of cross-field di↵usion and magnetic
reconnection due to the exponential increase in the sep-
aration of the field lines are intuitively obvious from the
behavior of contours defined by magnetic field lines, Fig-
ure (1). The initial, ` = 0, contour can be a circle of

FIG. 1: Rechester and Rosenbluth [5] gave this illustration of
the distortion with distance ` along the lines of an initially
circular contour (a) defined by magnetic field lines. The in-
termediate contour (b) is after a few exponentiations, and the
final contour (c) is after a number of exponentiations. The
final contour (c) should be thinner, so it encloses the same
area as (a), and it is mathematically impossible for the var-
ious legs of the contours to intercept despite the appearance
of interceptions in (c). More precisely a large number of field
line integrations are started on the circle (a), after integrating
each line a distance `b the integration positions lie on contour
(b), and after integrating a distance `c the integration posi-
tions of the lines lie on contour (c).

radius a on which the integration of arbitrarily large num-
ber of magnetic field lines is started. The location of the
lines after each field line has been followed a distance `
defines a new contour, which is generally distorted from
the ` = 0 circular form. Within the plasma community,
the most familiar example of a plot of such contours is in
the paper by Rechester and Rosenbluth [5], Figure (1),
which shows the initial contour (a), the distorted con-
tour after a few exponentiations (b), and after a larger
number of exponentiations (c).
The distortions of the contours formed by magnetic

field lines, Figure (1), enhances the rates of di↵usive re-
laxation across the magnetic field and magnetic recon-
nection in two ways:

1. Di↵usive relaxation over the gray area enclosed the

Rechester & Rosenbluth PRL, 1978
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Here we suggest a new approach which 
exploits the following connection:



How to Quantify Structure of 3D Field ?
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increases to prevent reconnection, which means r ! kqL
increases, where kq ! l0j=B. Reconnection is triggered
when r!" lnðkqddÞ, where dd % c=xpe is the interdiffusion
distance for magnetic field lines. The characteristic current
density required for rapid reconnection is only a factor of r
larger than B=l0L, so smooth magnetic fields can give large
exponentiations r > 10. Indeed, the examples that will be
given of exponentiation are for such magnetic fields.

Many plasma physicists consider the natural distortion
of small flux tubes into ellipses with a=b > 1020 so implausi-
ble that they see no reason to ponder the consequences.
Nevertheless, the exponential increase in the separation of
neighboring trajectories is a textbook concept in the theory
of dynamical systems7,8 though that theory focuses on sys-
tems in which the trajectories remain in a bounded region in
space. For such systems, the standard measure of exponentia-
tion is the Lyapunov exponent

kL & lim
‘!1

rð‘Þ
‘

; where (2)

rð‘Þ & lim
d0!0

ln
dð‘Þ
d0

! "
(3)

and dð‘Þ is the distance between two trajectories at a distance
‘ along one of the trajectories, which had a separation d0 at
‘ ¼ 0.

Magnetic field lines do not always exponentiate apart,
and the toroidal magnetic fusion program is based on pro-
ducing magnetic fields for which the field lines lie in surfaces
rather than exponentiating apart. This is the exception that
essentially proves the rule that the field lines of naturally
occurring magnetic fields exponentiate apart. Tokamaks are
known to be sensitive to surface breaking perturbations9 at
the level dB=B ! 10"3 and less, and the construction of
ITER is made more difficult by the design requirement that
the surface breaking fields satisfy dB=B < 5( 10"5.

To make the basic results of the paper accessible with-
out the reader having to master the theory of general coordi-
nate systems, the results are summarized in Sec. II. In
particular, Sec. II shows that any phenomena that are sensi-
tive to exponentially large distortions in the cross section of
flux tubes will be fundamentally different when magnetic
fields are restricted to a dependence on only two coordinates
rather than the physically relevant case of a dependence on
all three.

The derivation of the equations for neighboring field
lines uses an arbitrarily chosen magnetic field line ~x0ð‘Þ as a
coordinate axis. The resulting coordinate system is intro-
duced in Sec. III. Magnetic field lines are the trajectories of a
Hamiltonian, and the exact Hamiltonian for magnetic field
lines in the neighborhood of an arbitrarily chosen line ~x0ð‘Þ
is derived in Sec. IV. The derivations of Secs. III and IV do
require a knowledge of the mathematics of general coordi-
nate systems but can be skipped.

The properties of magnetic field lines are derived for
simple, but illustrative, examples of smooth magnetic fields
in Sec. V. Although the focus of the paper is on the proper-
ties of flux tubes and field lines in a given magnetic field

~Bð~xÞ, the physical importance of some of the terms in the
magnetic field line Hamiltonian is only clear when time de-
pendence is considered. This is done in Sec. VI. The final
section, Sec. VII, discusses the relation of this work to other
papers on space plasmas.

Although the topic of this paper is the behavior of mag-
netic field lines and flux tubes, the analysis is applicable to
the vorticity lines of fluid mechanics with only a change of
notation.

II. SUMMARYOF RESULTS

The separation between neighboring magnetic field lines
can be defined in a way that is simple and useful for practical
calculations, Eq. (14), but general properties of magnetic
field line trajectories are better defined by a more involved
analysis based on the use of a coordinate system in which an
arbitrarily chosen magnetic field line ~x0ð‘Þ is a coordinate
axis, Sec. III. Claude Mercier called this an intrinsic coordi-
nate system in its first plasma application.10

The trajectories of magnetic field lines that are separated
by an infinitesimal distance q from a central line ~x0ð‘Þ are
determined by only three functions of distance along that
line ‘. These are the local twist of the neighboring lines
kxð‘Þ and the magnitude kqð‘Þ and phase uqð‘Þ of the quad-
rupole magnetic field produced by currents away from the
central magnetic field line ~x0ð‘Þ. The strength of the quadru-
pole field, kqqB0, becomes greater than the magnetic field
strength along the central line B0 unless the currents that pro-
duce the quadrupole are located within a distance of order
1=kq of the central field line,~x0ð‘Þ, so kq is generally compa-
rable in magnitude to l0j=B.

The local twist of the magnetic field lines kx is the sum
of two functions of ‘,

kxð‘Þ & sþ l0
2

jjj
B

! "

0

: (4)

The torsion sð‘Þ of the central line measures the extent to
which it fails to lie in a plane; ðjjj=BÞ0, which is a function of
‘, is the measure of the current density along the central
magnetic field line.

A. Trajectories of neighboring field lines

Magnetic field lines obey the equations of Hamiltonian
mechanics,11–14 so it is not surprising that the magnetic field
line trajectories in the neighborhood of an arbitrarily chosen
field line can be placed in Hamiltonian form. This field-line
Hamiltonian has the form Hðw; a; ‘Þ ¼ whða; ‘Þ, Eq. (46),
where 2pw is the magnetic flux in a tube of radius q around
the central magnetic field line ~x0ð‘Þ and a is the polar angle
around the line ~x0ð‘Þ. The flux function w ¼ B0q2=2, where
B0ð‘Þ is the magnetic field strength along the line ~x0ð‘Þ. The
constant flux enclosed by a magnetic flux tube should not be
confused with 2pw. The flux function w is a canonical coor-
dinate of the field line Hamiltonian, dw=d‘ ¼ "@H=@a, so w
is not generally constant along a magnetic flux tube.

The linear dependence of the Hamiltonian on w will be
derived in Sec. IV but is essentially required by the

112901-3 Allen H. Boozer Phys. Plasmas 19, 112901 (2012)
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Periodic BC in X  and Y

Asymmetric Layer
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Example #1 -  Subsolar magnetopause
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3D Structure of Current Density 

Low density  → magnetosphere

High density  → magnetosheath

Moving slice in y-direction at fixed time 
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Daughton et al, 2014
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Field Line Exponentiation in Forward Direction
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Sharp boundary between smooth & chaotic field

Separatrix Surface  
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Seed points

Seed points

Directly test boundaries by following field lines 
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Mixing fraction also well correlated with current density



Topologically there are 3 Regions
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Time Evolution of 3D Reconnection Rate
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Boundaries evident in electron moments
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Isosurface of vorticity  -   Vortex Tubes
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Wrap-up of Vortex Tubes may 
Generate New Reconnection Sites
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Example #2  -  Vortex-Induced Reconnection 

Nakamura et al, JGR, 2013
Daughton et al, PoP, 2014 
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Time Evolution of Current Density
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Field-Line Exponentiation & Mixing Boundary
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Time Evolution of 3D Reconnection Rate
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Summary
  Magnetic reconnection can generate turbulence in large systems 

through tearing and flow driven instabilities

  Turbulence is highly anisotropic and is dominated by coherent 
structures - flux ropes, current sheets, vortices

 Clear power-laws in the range 

 Mixing of particles across the layer can be used to infer topology, 
and rapidly compute reconnection rate:

  Clear qualitative and quantitative changes in 3D rate
  However - energy conversion rates remain very similar 
  Turbulent mixing vs turbulent reconnection ?
  Implications for larger systems ?

 Range of observational signatures that can be tested with current 
and upcoming spacecraft missions such as MMS
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