Computing the Reconnection Rate in Turbulent Kinetic Layers

William Daughton Los Alamos National Laboratory

Collaborators: H. Karimabadi, V. Roytershteyn, T. Nakamura

7th (Astro) Plasma Kinetics Working Group Meeting Wolfgang Pauli Institute, Vienna, March 31, 2014

Major Uncertainties in Reconnection ?

Surrent understanding is based mostly on 2D simulations. How does reconnection really work in 3D?

Influence of turbulence ? Chaotic 3D magnetic fields?

Matthaeus & Lamkin, 1985,1986 Lazarian and Vishniac, 1991 Kim & Diamond, 2001 Kowal et al, 2009 Loureiro et al, 2009

Eyink, Lazarian & Vishniac, 2011 Guo, Dimond & Wang, 2012 Eyink et al 2013 Boozer 2012, 2013

Do these effects fundamentally alter reconnection?

Sole of kinetic effects in collisionless regimes?

 \bigcirc System size dependence \rightarrow Large vs asymptotically large?

Earth's magnetosphere is a nice reality check

Magnetic Reconnection in the Magnetosphere Onset occurs in ion-scale current layers Solution Produces electron layers Electron physics is a main focus of MMS mission \bigcirc Layers potentially unstable to: tearing \rightarrow islands, +velocity shear & streaming instabilities ... Tearing islands from 2D are really flux ropes in 3D which can interact and drive turbulence

Influence on reconnection rate & mixing ?

We are studying these issues with large-scale kinetic simulations - both hybrid and fully kinetic

High Resolution Hybrid Simulation - (2560)³ cells See - Karimabadi et al, PoP,2014

Fully kinetic simulations possible in smaller region $100d_i \sim R_E$

 $n_e^{den}_{4 6}$

9

Solar Wind

Mechanisms to Drive Turbulence at Magnetopause

How to compute 3D reconnection rate?

$$\frac{d\Phi}{dt} \propto \int_{s_1}^{s_2} E_{\parallel} ds$$

Find topological separators

Global Magnetosphere	→	Dorelli & Bhattacharjee, 2009 Haynes & Parnell, 2010 Komar, Cassak et al, 2013
Local Kinetic Simulation ?	→	Olson & Dorelli, 2014

GMR = Generalized Magnetic Reconnection, Hesse et al., 2005

Wendel et al., 2013 \rightarrow Open BC

Yi-Hsin Liu, et al., 2013 \longrightarrow Double Periodic

Finn et al., 2013 \longrightarrow Line-tied

Generalized Flux Function - Yeates & Hornig, 2011

Here we suggest a new approach which exploits the following connection:

Rechester & Rosenbluth PRL, 1978

Mixing Fraction

 $\mathcal{F}_e = \frac{n_e^{oot} - n_e^{top}}{n^{bot} + n^{top}}$

How to Quantify Structure of 3D Field ?

Example #1 - Subsolar magnetopause

Asymmetric Layer

 $n_{bot} = 8n_{top} \qquad T_i = 2T_e$ $L_x \times L_y \times L_z = 85d_i \times 85d_i \times 35d_i$ $2920 \times 2920 \times 1200 \text{ cells} \qquad B_g = 1$ $2 \times 10^{12} \text{ particles} \qquad m_i/m_e = 100$

Periodic BC in X and Y

Time Evolution of Current Density & Mixing Surface

3D Structure of Current Density

Moving slice in y-direction at **fixed** time

Flux Ropes in Asymmetric Reconnection Layers

Daughton et al, 2014

Energy Spectrum of Magnetic Field

Field Line Exponentiation in Forward Direction

Sharp boundary between smooth & chaotic field

Separatrix Surface

Correlation between Mixing & Stochastic Field

$$\mathcal{F}_e = \frac{n_{bot} - n_{top}}{n_{bot} + n_{top}} - \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Very good correlation!

X

Directly test boundaries by following field lines

Mixing fraction also well correlated with current density

Time Evolution of 3D Reconnection Rate

Boundaries evident in electron moments

Isosurface of vorticity - Vortex Tubes

Z

Y

Example #2 - Vortex-Induced Reconnection

Nakamura et al, JGR, 2013 Daughton et al, PoP, 2014

Time Evolution of Current Density

$$\mathcal{F}_e = \frac{n_{bot} - n_{top}}{n_{bot} + n_{top}}$$

Field-Line Exponentiation & Mixing Boundary

►X

$$\mathcal{F}_e = \frac{n_{bot} - n_{top}}{n_{bot} + n_{top}}$$

Energy Spectrum of Magnetic Field

Time Evolution of 3D Reconnection Rate

Summary

Magnetic reconnection can generate turbulence in large systems through tearing and flow driven instabilities

Turbulence is highly anisotropic and is dominated by coherent structures - flux ropes, current sheets, vortices

 \odot Clear power-laws in the range $\propto \ k_{\perp}^{-5/3}
ightarrow k_{\perp}^{-8/3}$

Mixing of particles across the layer can be used to infer topology, and rapidly compute reconnection rate:

- Clear qualitative and quantitative changes in 3D rate
- However energy conversion rates remain very similar
- Turbulent mixing vs turbulent reconnection ?
- Implications for larger systems ?

Searce of observational signatures that can be tested with current and upcoming spacecraft missions such as MMS