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directed along Q, with 

AVc = -N. AV./Nc (2) 

These results regarding the relationship among AVc, AVn, 
and Oe are illustrated in Figure 3 for a 6-hour stretch of Imp 8 
data measured during a positive velocity gradient preceding a 
high-velocity stream on November 5, 1973. The solid line in 
the first panel is the proton bulk speed, and the squares are the 
electron bulk speed determined from an integration over all 
energies. It is readily seen that they are nearly equal and track 
each other well. In the second panel is plotted (Nn/Nc)l AVnl 
(triangles) and I/XVcl (circles)with plus or minus sign affixed to 
the magnitude according to whether A l2n,c is parallel or an- 
tiparallel to O,. The experimental data satisfy (2) quite well ex- 
cept for scattered occurrences usually associated with 
magnetic connection to the bow shock as evidenced by an 
abrupt • 180 ø shift in Q,. In the third panel are plotted the 
directions /x!Pn (triangles), A I)c (circles), and {•e (squares), 
with 0 ø and 360 ø pointing radially away from the sun and 45 ø 
being the regular spiral direction at 1 AU. At times when only 
a triangle or square is visible, A I?n = Qe to within the dis- 
crimination increment fixed by the symbol size. The direction 
A lPn is nearly indistinguishable from Oe except during times of 
bow shock connection, and A lPn and A I Pc are nearly 180 ø 
apart. 

The fact that these relations hold in general over a very 
much larger data set is illustrated in Figures 4 and 5. In Figure 
4 a scatter plot similar in format to that of Figure 2 
demonstrates that (2) is generally satisfied. Figure 5 
demonstrates that A I?,= Qe; a plot of •c versus • (not shown 
here) also shows good correlation between -A I Pc and Oe. 
Although the scatter is larger (the errors in determining AVc 
are relatively larger than those for AV,, there is no doubt 
that -AI?c = 0e. On the average, (Nn/Nc)AVn = 49 km/s 
with an rms variation of +30 km/s. This is true independent 
of the model of the halo component used. However, the mag- 
nitude of AVn does depend on the model; A Vn as determined 
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Fig. 3. A plot of the relative core-bulk velocity and halo-bulk 

velocity difference vectors measured by using the Imp 8 analyzer dur- 
ing a velocity gradient region on November 5, 1973. Here the circles 
refer to the magnitude and direction of AVe, and the triangles refer to 
the magnitude and direction of (Nn/Ne)AVn. 
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Fig. 4. The correlation between (Nn/Nc)AVn and --AVc using 8 

months of bow shock unperturbed Imp 7 and 8 data. The format is 
identical to that used in Figure 2. 

by using fn alone is 690 km/s with a variation of +370 km/s 
and that determined by using Cnfn is 1215 km/s with a varia- 
tion of +580 km/s. 

It should be noted that the value of A Vn using fn alone 
quoted here differs from that reported previously (Feldman et 
al. [ 1974] found A Vn = 810 km/s with a measurement error of 
+ 150 km/s) because of the slightly different data sets used to 
definefn (see discussion in Appendix A). However, they agree 
within the measurement errors stated previously. These errors 
are larger than statistical plus digitization errors owing to the 
fact that a Maxwellian representation offn, although it is ade- 
quate, is not completely correct (see discussion in Appendix 
A). In fact, varying the choice of measured energy-angle count 
rate subsets to define fn is probably the most realistic way to 
determine the errors in evaluating halo parameters. 

The I = 4 moments (electron temperature). It is important 
to note that the halo temperature Tn and thermal anisotropy 
(T•/T•)n depend on the model used. Whereas the thermal 
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between A • and the radius vector ?) and Q (defined by •, the angle 
between Q and ?) using 8 months of bow shock unperturbed Imp 7 and 
8 data. The format is identical to that used in Figure 2. 
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These three modes correspond to the 'fast,' 'intermediate,' 
and 'slow' modes of low/• MHD theory, but we will not use 
this nomenclature, because it becomes confusing in the high 
/• limit (see below). Here we will use the terms 'fast mag- 
netosonic,' 'Alfv6n,' and 'slow magnetosonic' for the three 
modes corresponding to (7), (8), and (9), respectively [Ferraro 
and Plumpton, 1966]. For angles away from the extreme cases 
of 0 = 0 ø and 90 ø the Alfv6n mode is generally the least 
damped, and the slow magnetosonic mode is the most heavily 
damped (ll > co/3). 

As the wave number increases, the AlfvEn and slow 
magnetosonic waves go to resonances or to a heavily damped 
ion acoustic wave (co = kcs), but the fast magnetosonic wave 
transforms into a lightly damped whistler mode 

co -• [2• + [2,c•'k •' cos O/co, •' (10) 

As its phase velocity increases for co > [2i, the whistler becomes 
an electron mode, essentially independent of the ions. 

For/• - 1.0 the dispersion curves are somewhat different. 
The Alfv6n mode satisfying (8) remains, but the other two 
modes do not correspond to MHD waves in the small wave 
number limit. In particular, MHD theory predicts that there is 
a mode at co/kz < t•A [e.g., Ferraro and Plumpton, 1966, p. 75]. 
We find no such mode, but in agreement with the high 
results of Barnes [1966] we obtain a wave which lies at VA < 
co/kz < cs. 

We will denote the high/• modes by the names shown in 
Figure 3. The mode of fastest phase speed we continue to call 
fast magnetosonic, the mode characterized by (8) we continue 
to refer to as Alfv6n, and we assign the appellation slow 
magnetosonic to the remaining mode via elimination. The lat- 
ter assignment is not inappropriate, however, since this wave 
remains the most heavily damped of the three. In fact, the slow 
magnetosonic wave never goes unstable for the drift velocities 
considered in this paper; since it therefore will not interest us 
further, we will use the term magnetosonic as referring to the 
fast mode exclusively. 
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Fig. 3. Frequencies as a function of wave number for low- 

frequency waves from the linear dispersion relation. Parameters are as 
given in Table 1, except/•, = 1.00. As in Figure 2, Voc = v0• = 0, and 
cos 0 = 0.50. A dotted line indicates that the wave has become heavily 
damped. 

45 ø A If v•n Macj netoson ic 
135 ø 

0.0 0.5 

Fig. 4. Contours of constant 3/ as a function of wave vector k. 
Parameters are as given in Table 1, except t)A2/c 2 - 2.65 X 10 -8. Here 
v0c = 2.42vA. The Allyfin instability lies at 45 ø < 0 < 90 ø , the 
magnetosonic instability at 90 ø < 0 < 180 ø, and the whistler instability 
is outside of the figure at ka, >> 1, 0 = 180 ø. Dashed lines indicate 3/= 
10-4•2,; solid lines indicate 3/ = 10-•2•; a cross denotes a local max- 
imum in 3/. 

3. LINEAR DISPERSION RELATION: INSTABILITIES 

Forslund [ 1970] showed that a variety of plasma waves could 
be driven unstable in the solar wind by the collisional skewing 
of an electron distribution function bearing a large heat flux. 
In particular, he concluded that under conditions appropriate 
to the solar wind at 1 AU (Te • T• and finite /•), two 
electromagnetic modes should become unstable: the fast 
magnetosonic wave, propagating in the antisolar direction, 
and an electromagnetic ion cyclotron instability, topologically 
equivalent to the co = kd;a Alfv•n mode. (Forslund also con- 
sidered two other modes, the ion acoustic instability and the 
electrostatic ion cyclotron instability. Both have threshold 
drift speeds substantially above t;a under the conditions con- 
sidered in this paper; therefore we did not find them unstable, 
and we will not discuss them here.) 

Schulz and Et;iatar [1972] concluded that for growth rates 
based on counterstreaming Maxwellian electrons and ions, the 
Alfvfin mode is stable and the solar-directed magnetosonic in- 
stability should be dominant. However, Forslund et al. [1971] 
(see also Fried et al. [1971], comment by D. W. Forslund (as 
added to the paper by Barnes [1972]), and D. W. Forslund and 
J. M. Kindel, unpublished manuscript, 1975))numerically 
solved the electromagnetic dispersion relation for Maxwellian 
electrons drifting in relation to Maxwellian ions. For Te = Tt 
their results are that among current-driven instabilities the 
Alfv•n mode has the lowest instability threshold for/• > 10 -•. 
(Note added in proof: An earlier paper involving a two-com- 
ponent electron distribution is the paper by Sudan [1965] which 
showed that an electron heat flux could drive the k ll Bo whistler 
unstable.) 

To resolve these differences, we numerically solved the dis- 
persion relation using the single ion and two electron compo- 
nents described in section 2. When t;oc g 0, we found three dis- 
tinct instabilities [Gary et al., 1975]: the Alfvfin wave 
propagating toward the sun and the magnetosonic and 
whistler waves propagating in the antisolar direction. Figures 
1 and 2 of Gary et al. [1975] display growth rates ('y) as a func- 
tion of wave number k for representative 0; Figure 4 of this 
paper shows 'y for the Alfv•n and magnetosonic modes as a 
function of the wave vector k. For this set of parameters the 
Alfv•n instability propagates at a large angle to Bo and in a 
comparatively narrow range of 0; the magnetosonic mode is 
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unstable across a wide range of angles, although not along the 
magnetic field; and the whistler instability propagates in a very 
narrow cone about 0 = 0 ø. The magnetosonic and Alfv•n in- 
stabilities are unstable in the wave number range kat •< 1; the 
whistler is most unstable for 3 < kat •< 7. 

The whistler mode has maximum growth rate for k parallel 
to Bo, and in this direction it is a pure electromagnetic mode; 
that is, bE•[ = 0 (where iSE• (iSEz) is the fluctuating electric field 
parallel (perpendicular) to k). Since it has a high phase speed, 
o•/k >> v,, it is virtually independent of the ions and may be 
thought of as an electromagnetic electron-electron streaming 
instability. Both the magnetosonic and the Alfv•n heat flux in- 
stabilities are 'mixed' modes, possessing both electromagnetic 
and electrostatic fluctuations, and 

Ell > bEz (11) 

All three modes are electron resonant instabilities, and it is 
convenient to classify them according to their 'resonant fac- 
tors,' which are, in the kzaj << 1 limit, 

•'• -- (co - k.vol)/(2)l/2kzvlll (12) 

for the Landau resonance with bE• and transit time resonance 
with iSB• [Stix, 1962, section 9-5] and 

(13) 

for the cyclotron resonance of electromagnetic fluctuations 
transverse to Bo. As is well known in plasma physics, the 
magnitude of these factors determines the v• velocity range of 
the wave-particle interaction for resonant instabilities. •'• • 0 
indicates that jth species particles with vz much less than a 
thermal speed resonate, whereas I•)1 >> 1 means that the 
resonance lies at large I v,I regions of the distribution function. 

From the dispersion properties of the magnetosonic and 
Alfv•n instabilities it follows that [•'c I << 1 and I•'-I < 1. 
Thus these instabilities resonate with electrons of relatively 
small v•. In addition, •'•-+ > 10 for both halo and core, an in- 
dication that the cyclotron resonance is so weak as to be 
negligible for both of these instabilities. 

The whistler has no fluctuating fields in the z direction, but 
the halo resonant factor •'H + can be as small as 2. This implies 
that the high electrons on the 'tail' of the halo distribution 
provide the primary wave-particle interaction. 

The Alfv•n mode is unstable when k has a component 
pointing in the same direction as Voc (toward the sun in the 
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Fig. 5. Threshold core drift velocity as a function of/5• (0.05 < 
< 1.00) with Tc/T, variations. Parameters are as given in Table 1, ex- 
cept' for/5, and Tc/T,. 

solar wind frame); the magnetosonic and whistler waves are 
unstable for k'voH > 0 (antisolar direction). This suggests that 
the core drives the Alfv•n instability and the halo drives the 
antisolar instability. This interpretation is reinforced by the 
following results: 

1. If the electrons consist of a single current carrying com- 
ponent with drift speed somewhat above vA, the wave 
topologically equivalent to the Alfv•n mode is unstable (as it is 
in the paper by Forslund et al. [1971]), but the magnetosonic 
and whistler waves are stable. 

2. Increasing T•/Tt and/or decreasing Tc/Tt enhances the 
growth rate of both antisolar modes. This may be interpreted 
as enhancing the relative amount of free energy in the halo 
available for driving these instabilities. 

3. Sample computations at • = 1.00 show that solar- 
directed magnetosonic waves are stable for Voc < 6 vA, and in 
this drift velocity range there is no trend toward instability. 

Another difference between the magnetosonic and Alfv•n 
heat flux instabilities is that near Voc = va the former is un- 
stable for a limited range of core drift speed, while the latter 
displays a continually increasing maximum growth rate as a 
function of Voc. (See Figure 3 of Gary et al. [1975].) However, 
if nonlinear or other effects limit Voc to values near threshold 
(and the experimental result Voc • v• suggests that this is the 
case at 1 A U), then this difference is not significant. 

In order to determine which of these instabilities is most 

likely to influence electron heat flow in the solar wind, it is 
necessary to examine their parametric dependencies. The fol- 
lowing dimensionless parameters are observed to have signifi- 
cant variations in the solar wind [Feldman et al., 1975]: TiiffT• 4 
forj = i, H, C; TffT•, nffn•, and Vo•/V• forj = H, C; and • and 
v•'/c •'. (As was discussed in section 2, this assumes that the 
ions can be represented by a single bi-Maxwellian proton dis- 
tribution.) 

This list of 11 parameters can be reduced by two via (3) and 
(4); we will eliminate two more by invoking the (approximate) 
experimental results [Feldman et al., 1975] that T•Tc = 6 and 

TiiH/T•_H- 1 = 2(Tiic/T•_c- 1) (14) 

Sample computations have shown no significant changes due 
to variations in va•'/c •'. Thus we have six dimensionless param- 
eters: Tc/T•, T,i•/T•, Tiit/T•t, n•/nt, Voc/VA, and •t. 

Figure 5 displays the threshold value of Voc/Va as a function 
of B, and Tc/T,. (We define threshold as the minimum core 
drift speed such that ? > 10-4fit. This corresponds to an in- 
stability growth length o f about 0.1 AU.) The most important 
parameter variation displayed here is the •t dependence, and 
the most important effect is the very strong raising of the 
Alfv•n instability threshold. Tc/Tt variations appropriate to 
the solar wind [Montgomery, 1972] do not significantly change 
this effect, as is clear from the figure. 

In contrast, electron temperature anisotropies have the 
strongest effect on the whistler, sharply raising the threshold of 
that instability when the parallel temperature is greater than 
the perpendicular temperature. This is illustrated in Figure 6, 
where core drift thresholds are plotted against T•H/T• for 
several •t values. Here we have also varied Tiic/T•c according 
to (14), in contrast to Figure 4 of Gary et al. [1975], where 
T•c/T•c = 1.0; the difference in the •t = 0.25 curves for the 
magnetosonic mode in the two figures may be credited to the 
destabilizing effects of increasing T•c/T•c for this instability. 

Proton temperature anisotropies do not significantly change 
the thresholds of any of these instabilities. Increasing T•t/T•t 
from 1.0 to 2.0 decreases the threshold Voc of both the Alfv•n 
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qe =12'7' R-3'l[g wrn-2 ] (20) 

is nearly identical to the observed gradient, R '3'0, and yields an 
electron heat flux magnitude in excellent agreement with the 
observations. Although the agreement between (20) and the 
observations is not based on any theoretical arguments, it does 
suggest that the Feldman et al. [1975] picture of the electron heat 
flux is correct. Instead of treating the electron heat flux as carried 
by an energetic tail on the total electron distribution, as in the 
collisional models, it is possible to assume that the electron heat 
flux is equivalent to the bulk motion of the halo electrons in the 
frame of the total distribution even though the core and halo 
component distributions are not Maxwellians. Heat flux 
regulation mechanisms enter into the Feldman expression through 
the zero current condition between the core and halo electrons, 
that is, the halo electron flux in the frame of the solar wind can be 
expressed in terms of the core-bulk velocity difference; nrta V H = 
ncAV c (see Figure 2). Therefore the mechanism responsible for 
the maintaining the average core electron velocity at nearly the 
solar wind speed also regulates the electron heat flux. 

The correlation between the local Alfv6n speed and AVc 
observed at 1 AU [Feldman et al., 1976a, b] was seen as 
particularly significant after a number of theoretical 
investigations yielded heat flux limiting instabilities with 
threshold conditions of A V c = V A [ Gary et al., 1975b]. As shown 
in Figure 12, we find that the core-bulk velocity difference ranges 
from zero to five times the local Alfv6n speed, but shows no 
consistent correlation with the Alfv6n speed. It is worth noting 
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that some correlation between the local Alfv•n speed and AVc is 
always expected. For constant density, (6) and the Parker field 
magnitude [Parker, 1963] yield the relationship: 

qlle ( r.•..•) = •Q (21) 
B( r) 4 •;Borl 2 

where B o and q are constants. Figure 13 displays the clear 
correlation between magnetic field strength and electron heat flux 
predicted by (21). Since, for constant density, q, elB is constant, 
the local Alfv6n speed and the electron heat flux are 
automatically correlated: 

QVA 4411;nirni 
qlle(r) = 4•Børl 2 = CV n (22) 

where C is a constant. The electron heat flux is well correlated 

with n HVH (Figure 4) and n H A V H (not shown) which, in turn, is 
equivalent to n c AV c thus yielding a direct correlation between 
the local Alfv6n speed and A V c for constant plasma density. The 
intermittent correlations of AV c with the Alfv6n speed shown in 
Figure 12 are likely dominated by this macroscopic relationship 
and not necessarily by microscopic instability physics. The 
agreement between (19) and the observations suggests that the 
physics responsible for regulating the relative drifts of the core 
and halo is also responsible for regulating the electron heat flux. 
However, apparent correlations of solar wind parameters are 
potentially misleading and a more detailed investigation of the 
regulation process is required. 

Heat flux instabilities. Finally, we examine the properties of 
the electron heat flux in conjunction with some of the threshold 
conditions predicted by a particular theory in the hope of 
identifying potential heat flux limiting instabilities. The objective 
is to find a heat flux dissipation mechanism whose predictions for 
heat flux magnitude and radial scaling match the observations and 
one which converts heat flux energy into the thermal energy of 
the convecting electron distribution. A recent theoretical study 
[Gary et al., 1994] has examined electromagnetic heat flux 
instabilities which may arise in the solar wind. Using the core- 
halo model of Feldman et al. [1975], and assuming both electron 
components are well represented by drifting Maxwellian 
distributions, Gary et al. [1994] concluded that the whistler heat 
flux instability has the lowest threshold for typical solar wind 
conditions at 1 AU. Under the additional assumption that the 
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Figure 12. (a) Ratio of the core-bulk velocity difference, A Vc, 
to the local Alfv6n speed. (b) Interval of Ulysses data showing 
intermittent correlation between the Alfv•n speed and A V c. 
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-  Liouville	  correcIon	  
-  Moment	  calculaIons	  above	  φsc	  
-  Halo	  has	  a	  core-‐sized	  hole	  
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2. Instrument and Analysis 
The Ulysses Solar Wind Plasma Experiment's electron 

spectrometer is a spherical-section electrostatic analyzer which 
uses channel electron multipliers (CEMs) to count electrons 
discretely. A full description of the instrument is given by Bame 
et al. [1992]. The detector array comprises seven CEMs arranged 
in a fan with the center CEM pointing perpendicular to the 
spacecraft spin axis, which continuously points at the Earth. This 
arrangement allows the determination of a three-dimensional 
velocity space distribution, with the other two dimensions 
accounted for by the spacecraft spin of five revolutions per 
minute and by stepping in energy. Over 95% of 4•-steradians of 
solid angle is covered and the energy range of the instrument is 
1.6 to 862 eV. Each electron spectrum takes 2 min to measure and 
includes 20 logarithmically spaced energy steps. One out of every 
three spectra returned is fully three-dimensional in velocity space. 
We have used three-dimensional phase space densities 
exclusively in this study and have corrected the data for 
spacecraft charging effects with a new technique that accounts for 
the deflection of the electron trajectories due to the photoelectron 
sheath structure [Scirne et al., 1994]. This spacecraft charging 
correction significantly improves our determination of the three- 
dimensional electron distribution, particularly at lower energies. 

The Ulysses magnetometer consists of both a vector helium 
magnetometer and a fluxgate magnetometer [Balogh et al., 1992]; 
32-s average vector field measurements are used in this study. 

A typical electron energy spectrum, spin averaged over the 
instrument's polar and azimuth angles, is shown in Figure 1; the 
photoelectron, core, and halo electron populations are each 
identified. The spacecraft potential is always positive and is 
responsible for the trapped photoelectron population identified in 
Figure 1. The intersection of the photo and core electron 
distributions is used to calculate the spacecraft potential and the 
energies and trajectories of the measured electrons are corrected 
for the attractive spacecraft potential [Scirne et al., 1994]. 
Typically, two (core and halo) drifting bi-Maxwellian 
distributions are fit to the three-dimensional electron 
distributions. However, in this study we have used electron 
moments generated by numerical integration of the measured 
core, halo, and total electron populations. For the halo integration 
we assume that there are no halo electrons below the core-halo 

breakpoint energy [Feldrnan et al., 1975; Phillips et al., 1993]. 
By cleanly separating the total electron distribution into core and 
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Figure 1. A typical electron distribution as measured by the 
electron spectrometer aboard Ulysses, after Phillips et al. 
[1993]. The core fit yields a temperature of 1.2 x 105 IC 

halo parts, a zero current relationship is mathematically 
established between the core and halo electrons in the frame of 
the total electron population (the solar wind frame). As a check of 
our separation and integration techniques, Figure 2 shows the 
halo electron flux (n HVH) versus the core electron flux (n cVc) in 
the frame of the total electron population for the entire 1.2 to 5.4 
AU interval. A corresponding plot for 1 AU data from the IMP 
spacecraft can be found in the work by Feldman et al. [1975]. 

3. Electron Properties From 1 To 5 AU 
In agreement with earlier studies [Feldman et aL, 1975], 

analysis of the Ulysses data shows that the direction of the 
electron heat flux is aligned with the local magnetic field vector. 
This is also true of the heat flux obtained from separate 
integrations of the core and the halo electrons. The electron heat 
flux is given by the expression 

qe = $ •UU2 f e d3v (2) 
where U = v - <v>. Histograms of the cosine of the angle 
subtended by the electron heat flux vector and the local magnetic 
field vector for the core and halo heat fluxes, qc and qH, are 
shown in Figure 3. For the solar energy budget, only the electron 
heat flux of the total distribution is physically relevant. The heat 
fluxes of the two-component distributions, core and halo, 
represent the asymmetrical nature of each component distribution 
and are examined throughout this paper because they may 
provide insight into the processes responsible for the generation 
of each component. For example, the existence of a sunward core 
heat flux is not predicted by simple theories of coronal expansion 
and is indicative of the coupling between the core electrons and 
the solar wind ions which accelerates the core electrons to nearly 
the solar wind speed. Feldrnan et al. [1975] reported a much 
smaller, effectively ignorable, core heat flux. Our observation of a 
small but significant core heat flux is likely due the availability of 
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Figure 2. Halo versus core electron current in frame of total 
electron population. V is the total electron velocity based on 
an integration of the entire electron distribution. Similarly, VH 
and V c are the halo and core velocities. 



Wind/3DP	  measurements	  

3/26/14	  

The Wind spacecraft

• Launched in 1994 to study
the solar wind

• Spinning spacecraft (spin
period = 3 seconds)

• After years of various orbits,
now parked at L1

• State of the art plasma and
wave measurements

Harten and Clark 1995

EESA (Electrostatic Analyzer)
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• Full three-dimensional electron distribution functions are
measured with curved plate electrostatic analyzers.

• EESA-L (3 eV-1 keV) and EESA-H (100 eV-30 keV)
combine to cover the core,halo and strahl electron
populations.

Lin et al. 1995

•  Launched	  in	  1994,	  parked	  at	  L1.	  	  Lots	  of	  data	  
•  3	  second	  spin	  period	  
•  Superb	  plasma	  and	  waves	  measurements	  

•  4	  ESAs	  (2x	  ion	  and	  2x	  electron)	  
•  MagneIc	  fields	  (fluxgate	  and	  search	  coil)	  
•  Plasma	  waves	  and	  radio	  frequency	  
•  EnergeIc	  parIcles	  
•  Ion	  composiIon	  



Precision	  electron	  measurements	  
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Use	  quasi-‐thermal	  noise	  (electric	  fluctuaIon)	  measurements	  to	  constrain	  the	  
absolute	  plasma	  density	  –	  immune	  to	  s/c	  plasma	  environment!	  
	  
Note:	  	  1V	  ~	  600	  km/s	  for	  an	  electron	  

Spacecraft Charging

• In the solar wind, spacecraft
charge slightly (a few eV)
positive due to solar UV
photoemission.

• Spacecraft potential affects
electron parameters (Ne, Te)
measured by plasma
instruments.

• Potential is dependent on Ne,
Te – which is what we want to
measure!

Grard et al. 1983



Precision	  electron	  measurements	  
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Use	  quasi-‐thermal	  noise	  (electric	  fluctuaIon)	  measurements	  to	  constrain	  the	  absolute	  
plasma	  density	  –	  immune	  to	  s/c	  charging	  effects!	  	  Requires	  L>>λD	  
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Current	  balance	  in	  the	  proton	  frame	  
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core drift

halo drift

In	  the	  charge-‐center	  (~cm)	  frame,	  we	  expect	  zero	  net	  current:	  	  nc	  vc	  +	  nh	  vh	  +	  ns	  vs	  =	  0,	  
which	  seems	  to	  be	  so...	  



Core	  electron-‐proton	  (||)	  dri.	  
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Core drift vs. collisional age (uncorrected)
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Vc||(Ae) = (-140.6±5.0) exp (-Ae/(28.3±1.5)) + (-19.1±1.4)
Red. χ2: 2.82     n: 27673

??	  150-‐200	  km/s	  



Sunward	  dri.	  in	  collisional	  regime	  
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Core drift velocity vs. φB (for collisionally old plasma)
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Vc||(km/s) = (2.1±1.0) + (40.1±1.7) cos(φB - (3.7o±1.8o))
Red. χ2: 1.07     n: 2061

-‐  The	  remnant	  dri.	  (in	  the	  field-‐aligned	  solar	  wind	  frame)	  varies	  sinusoidally	  with	  the	  clock	  angle	  of	  the	  
magneIc	  field.	  

-‐  ProjecIon	  of	  a	  constant	  dri.	  in	  the	  sunward	  direcIon,	  which	  exists	  independent	  of	  the	  IMF	  direcIon.	  
-‐  We	  interpret	  this	  as	  evidence	  for	  a	  modulated	  spacecra.	  potenIal	  
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SSLVariation in spacecraft potential
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Dipole	  correcIon	  to	  s/c	  potenIal	  
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Core drift vs. collisional age (corrected)
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Red. χ2: 3.98     n: 27673

Core	  electron-‐proton	  (||)	  dri.	  
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Gone!	  150-‐200	  km/s	  



Large	  electron	  core	  dri.s	  
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~200	  km/s	  in	  the	  
collisionless	  limit	  

Core	  dri.	  

Suprathermal	  dri.	  

v1 = v0 e�A1F (x0,↵)



Larger	  electron	  core	  dri.s	  in	  the	  corona	  
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Larger	  a/p	  temperature	  raIos	  in	  the	  corona	  
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FIG. 2. Distribution of θαp-values inferred for a distance r =
0.1 AU. For reference, the distribution of θαp-values observed
by the Wind spacecraft at r = 1.0 AU (see Figure 1) is also
shown (green, dash-dotted curve) for ease of comparison.

Unlike in the definition of collisional age, the param-
eters np, vrp, and Tp in Equations 10 and 11 need not
be constants but can instead vary with r. This study
assumed the following radial scalings:

np(r) ∝ r−1.8 , vrp(r) ∝ r−0.2 , and Tp(r) ∝ r−0.74 .
(12)

The scalings for np and Tp were derived from an analysis
of observations from the Helios spacecraft [30], and that
for vrp was chosen to conserve proton flux density. Some
systematic effects inevitably resulted using these scaling
as they are broad averages and are partially coupled (e.g.,
the scalings of np and Tp vary with vrp). Nevertheless,
the results presented below were found to be relatively
insensitive to the specific scalings used.
Equation 10 (along with the Equations 11 and 12) was

applied to each Wind ion spectrum from the dataset.
More specifically, the set of observed np-, vrp-, Tp-, ηαp-,
and θαp-values from each spectrum was used as a bound-
ary condition at r = 1.0 AU in Equation 10, which was
then numerically solved so that the value of θαp at some
other r could be inferred. In these calculations, the im-
pact of the singularity at θαp = 1 was mitigated by nu-
merically integrating ln|θαp − 1| rather than θαp per se.
The black, solid histogram in Figure 2 shows the dis-

tribution of θαp-values computed in this way for r =
0.1 AU ≈ 22R⊙ (i.e., near the Alfvén critical point). Es-
sentially, this is the distribution of α-proton relative tem-
peratures that is expected just outside the corona based
on observations of solar wind near Earth. Note that the
narrow spike near θαp(0.1 AU) = 0 is non-physical and
was most likely caused by the singularity in Equation 10

and finite measurement uncertainty (see [31]).

Statistically, these inferred θαp(0.1 AU)-values are
most remarkable for having only a single mode. While
the measured values of θαp(1.0 AU) have a bimodal distri-
bution, Figure 2 reveals that the distribution of the asso-
ciated θαp(0.1 AU)-values has only one peak. A Gaussian
fit of this peak’s crest indicates the mode of θαp(0.1 AU)
to be 5.4. Furthermore, this peak bears a striking resem-
blance in location, width, and shape to the peak near
θαp = 4.5 in the measured θαp(1.0 AU)-distribution.

These results, despite the simplicity of the analytic
model used to obtain them, indicate that collisional
thermalization, in and of itself, can account for the bi-
modality in the distribution of θαp-values observed at
r = 1.0 AU. As stated above, the low-θαp mode is pre-
dominantly associated with slow wind, and the high-θαp
mode predominately with fast wind. Nevertheless, this
correlation does not seem to arise from slow and fast
wind having different coronal heating profiles. Rather,
slow wind simply has a longer expansion time and, be-
ing typically denser and cooler, thermalizes more rapidly

(note the factor np v−1
rp T−3/2

p in Equations 7 and 10).

Despite well-established differences in slow and fast
wind at r = 1.0 AU, the results of this study suggest
that such differences (at least in terms of relative ion
temperatures) may be much less pronounced closer to the
Sun. Indeed, observations of coronal O5+ with the Solar
and Heliospheric Observatory’s Ultraviolet Coronagraph
Spectrometer have revealed evidence of enhanced heavy-
ion temperatures both in sources of slow wind [32, 33] as
well as in sources of fast wind [34]. Likewise, other stud-
ies have found the energy flux density of the solar wind
to be largely independent of wind speed [35, and refer-
ences therein]. Collectively, these results suggest signifi-
cant similarities in the mechanisms responsible for heat-
ing slow and fast wind in the solar corona. The veracity of
this conclusion may ultimately be evaluated with obser-
vations from Solar Probe Plus, which is currently slated
to have perihelia at r < 0.05 AU [36].
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TABLE I. Correlation Coefficients with θαp.

x ρS(x, θαp)
np -0.445
vrp 0.607
Tp 0.737
Ac -0.755

of a j-particle. As protons are the most abundant ion
species, their self-collision time can be used for collisional
age. Making the substitution τ = τp into Equation 4
gives

Ac =

(

1.31× 107
cm3 kmK3/2

s AU

)(

np

vrp T
3/2
p

)

(r) (λp) .

(7)
Reference [23] qualitatively explored the influence of

particle collisions on α-proton thermalization by using
observations from the Wind spacecraft to plot the trend
in θαp versus solar wind speed and versus collisional age.
While θαp was found to generally increase with speed,
the trend exhibited considerable scatter (e.g., due to
occasional fast wind with θαp ≈ 1). In contrast, the
plot of θαp versus collisional age showed a much tighter,
smoother trend. These results were interpreted as indi-
cating that collisions strongly affect the α-proton relative
temperature in the solar wind.
The qualitative results of Reference [23] are confirmed

by the quantitative results in Table I, which lists the cor-
relation coefficient, ρS , between each of four parameters
(np, vrp, Tp, and Ac) and θαp. As indicated by the sub-
script “S,” these calculations used the Spearman correla-
tion coefficient [27] rather than the more commonly-used
Pearson correlation coefficient [28]. Spearman’s defini-
tion is less sensitive to outliers and is more general in
that it gauges the monotonicity (versus the linearity) of
the relationship between two parameters.
Table I shows that, while θαp is correlated with each

of the four parameters, the trend is strongest with Ac.
Though the parameters np, vrp, and Tp are well known to
themselves be correlated, Ac combines them (see Equa-
tion 7) to produce a correlation with θαp that is stronger
than that with any one individually. This result pro-
vides quantitative evidence that the θαp-values observed
at r = 1 AU are heavily influenced by particle collisional
– more so even than differences between the processes
that generate the slow and fast wind in the corona.
While collisional age is a useful tool for broadly cate-

gorizing the collisionality of solar wind plasma, it has two
significant limitations. First, per Equation 4, collisional
age is defined in terms of a collisional timescale. To de-
rive Equation 7, a “generic” timescale was chosen, but,
as noted above, collisional relaxation occurs on differ-
ent rates for different non-equilibrium features. Second,
Equation 4 tacitly assumes that the parameters np, vrp,

and Tp remain constant as the plasma travels from the
Sun to the observer. In reality, these parameters are af-
fected by numerous processes (e.g., expansion and wave
dissipation) and thus vary with solar distance, r.
As opposed to collisional age, a more complete under-

standing how particle collisions impact the α-proton rela-
tive temperature, θαp, can be achieved by directly model-
ing the collisional thermalization of these two species [24].
Reference [29, p. 34] considers a multi-species plasma
with neither temperature anisotropy nor relative drift
and analytically describes the time evolution of each
species’ temperature under the influence of particle col-
lisions. In particular,

dTj

dt
=
∑

j′ ̸=j

(

0.174
cm3 K3/2

s

)

(

(µj µj′)
1/2 Z2

j Z
2
j′ nj′ λjj′

(µj Tj′ + µj′ Tj)
3/2

)

(Tj′ − Tj) ,

(8)
where j is a particle species in the plasma, the sum is
taken over all other particle species j′ therein, and

λjj′ = λj′j = 9.+ ln

⎡

⎣

(

1

cm3/2 K3/2

)(

Zj Zj′ (µj + µj′ )

µj Tj′ + µj′ Tj

)

(

nj Z2
j

Tj
+

nj′ Z2
j′

Tj′

)1/2
⎤

⎦ ,

(9)
is the Coulomb logarithm.
For this study, Equation 8 was used to develop a simple

model the radial evolution of θαp in a parcel of solar wind
plasma. For this analysis, only protons and α-particles
were considered: other ions species and electrons were
neglected. An equation for dθαp/dt was derived from
Equation 8 using the chain rule. By then assuming a
system in steady state, the total derivative was converted
into the convective derivative. This readily gave

dθαp
dr

=

(

2.60× 107
cm3 kmK3/2

s AU

)(

np

vrp T
3/2
p

)

(

µ1/2
α Z2

α (1− θαp) (1 + ηαp θαp)

(µα + θαp)
3/2

)

(λαp) ,

(10)

with the Coulomb logarithm

λαp = 9.+ ln

[

(

1

cm3/2 K3/2

)

(

T 3/2
p

n1/2
p

)

(

µα + θαp
Zα (1 + µα)

)(

1 +
Z2
α ηαp
θαp

)−1/2
]

.

(11)
and ηαp ≡ nα / np. In the interest of generality, Equa-
tions 10 and 11 retain all factors of µα and Zα.
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TABLE I. Correlation Coefficients with θαp.

x ρS(x, θαp)
np -0.445
vrp 0.607
Tp 0.737
Ac -0.755

of a j-particle. As protons are the most abundant ion
species, their self-collision time can be used for collisional
age. Making the substitution τ = τp into Equation 4
gives

Ac =
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1.31× 107
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(7)
Reference [23] qualitatively explored the influence of

particle collisions on α-proton thermalization by using
observations from the Wind spacecraft to plot the trend
in θαp versus solar wind speed and versus collisional age.
While θαp was found to generally increase with speed,
the trend exhibited considerable scatter (e.g., due to
occasional fast wind with θαp ≈ 1). In contrast, the
plot of θαp versus collisional age showed a much tighter,
smoother trend. These results were interpreted as indi-
cating that collisions strongly affect the α-proton relative
temperature in the solar wind.
The qualitative results of Reference [23] are confirmed

by the quantitative results in Table I, which lists the cor-
relation coefficient, ρS , between each of four parameters
(np, vrp, Tp, and Ac) and θαp. As indicated by the sub-
script “S,” these calculations used the Spearman correla-
tion coefficient [27] rather than the more commonly-used
Pearson correlation coefficient [28]. Spearman’s defini-
tion is less sensitive to outliers and is more general in
that it gauges the monotonicity (versus the linearity) of
the relationship between two parameters.
Table I shows that, while θαp is correlated with each

of the four parameters, the trend is strongest with Ac.
Though the parameters np, vrp, and Tp are well known to
themselves be correlated, Ac combines them (see Equa-
tion 7) to produce a correlation with θαp that is stronger
than that with any one individually. This result pro-
vides quantitative evidence that the θαp-values observed
at r = 1 AU are heavily influenced by particle collisional
– more so even than differences between the processes
that generate the slow and fast wind in the corona.
While collisional age is a useful tool for broadly cate-

gorizing the collisionality of solar wind plasma, it has two
significant limitations. First, per Equation 4, collisional
age is defined in terms of a collisional timescale. To de-
rive Equation 7, a “generic” timescale was chosen, but,
as noted above, collisional relaxation occurs on differ-
ent rates for different non-equilibrium features. Second,
Equation 4 tacitly assumes that the parameters np, vrp,

and Tp remain constant as the plasma travels from the
Sun to the observer. In reality, these parameters are af-
fected by numerous processes (e.g., expansion and wave
dissipation) and thus vary with solar distance, r.
As opposed to collisional age, a more complete under-

standing how particle collisions impact the α-proton rela-
tive temperature, θαp, can be achieved by directly model-
ing the collisional thermalization of these two species [24].
Reference [29, p. 34] considers a multi-species plasma
with neither temperature anisotropy nor relative drift
and analytically describes the time evolution of each
species’ temperature under the influence of particle col-
lisions. In particular,

dTj

dt
=
∑

j′ ̸=j

(

0.174
cm3 K3/2

s

)

(

(µj µj′)
1/2 Z2

j Z
2
j′ nj′ λjj′

(µj Tj′ + µj′ Tj)
3/2

)

(Tj′ − Tj) ,

(8)
where j is a particle species in the plasma, the sum is
taken over all other particle species j′ therein, and

λjj′ = λj′j = 9.+ ln

⎡

⎣

(

1

cm3/2 K3/2

)(

Zj Zj′ (µj + µj′ )

µj Tj′ + µj′ Tj

)

(

nj Z2
j

Tj
+

nj′ Z2
j′

Tj′

)1/2
⎤

⎦ ,

(9)
is the Coulomb logarithm.
For this study, Equation 8 was used to develop a simple

model the radial evolution of θαp in a parcel of solar wind
plasma. For this analysis, only protons and α-particles
were considered: other ions species and electrons were
neglected. An equation for dθαp/dt was derived from
Equation 8 using the chain rule. By then assuming a
system in steady state, the total derivative was converted
into the convective derivative. This readily gave

dθαp
dr

=

(

2.60× 107
cm3 kmK3/2

s AU

)(

np

vrp T
3/2
p

)

(

µ1/2
α Z2

α (1− θαp) (1 + ηαp θαp)

(µα + θαp)
3/2

)

(λαp) ,

(10)

with the Coulomb logarithm

λαp = 9.+ ln

[

(

1

cm3/2 K3/2

)

(

T 3/2
p

n1/2
p

)

(

µα + θαp
Zα (1 + µα)

)(

1 +
Z2
α ηαp
θαp

)−1/2
]

.

(11)
and ηαp ≡ nα / np. In the interest of generality, Equa-
tions 10 and 11 retain all factors of µα and Zα.

At	  20	  Rs,	  Tα/Tp	  may	  be	  enIrely	  
‘nonthermal’	  
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HeaIng	  by	  kineIc	  Alfven	  
waves	  (KAW)	  
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For the dissipation of Alfve� n waves of interest to us, this is
well satisÐed even if cT D 1 ; we therefore always use andP

pas estimates of the proton and electron heating rates,P
erespectively.

Waves with L arge3.3. Alfve� n k
M

Because has an inÐnite number of rootsequation (3)
(mostly strongly damped waves with no Ñuid counterparts),
some care must be taken in its solution. Our technique is to
Ðrst solve the dispersion relation in a simple limit (e.g., the
MHD limit and plasma parameters such that the wave is
weakly damped) ; this ensures that we know which mode we

are investigating. We then incrementally change the wave-
vector and/or the plasma parameters and follow the proper-
ties of the solution. We emphasize that we have used the
exact form of the susceptibility tensor, with no approx-
imations.

In we show several properties of the Alfve� n waveFigure 1
as a function of the proton to electron temperature ratio,

and the parameter which measures theT
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plasma with equal gas and magnetic pressure (b \ 1). (a) The parallel phase speed in units of the Alfve� n speed. For is nearly the same as forT
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(Quataert,	  1998)	  

Linearized	  Vlasov-‐Maxwell	  calculaIon	  
isotropic	  Maxwellian	  protons	  
Isotropic	  Maxwellian	  dri.ing	  core	  electrons	  
Isotropic	  Maxwellian	  dri.ing	  halo	  electrons	  
current	  balance:	  	  nc	  vc	  +	  nh	  vh	  =	  0	  in	  proton	  frame	  
kineIc	  Alfven	  waves	  –	  highly	  oblique	  (89°),	  k	  ρi	  ~	  1	  
	  
‘HeaIng’	  rate	  is	  derived	  from	  E•j	  (SIx,	  1962)	  
	  
P	  =	  energy	  absorbed	  per	  wave	  period	  
	  
	  
	  

Ps =
E⇤ · �a

s |!=!r ·E
4W

,

W ⌘ 1

16⇡


B⇤ ·B+E⇤· @

@!
(!✏h)|!=!r ·E

�

Ps	  >	  0	  	  -‐	  species	  s	  absorbs	  wave	  energy	  
Ps	  <	  0	  	  -‐	  species	  s	  gives	  energy	  to	  wave	  
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These three modes correspond to the 'fast,' 'intermediate,' 
and 'slow' modes of low/• MHD theory, but we will not use 
this nomenclature, because it becomes confusing in the high 
/• limit (see below). Here we will use the terms 'fast mag- 
netosonic,' 'Alfv6n,' and 'slow magnetosonic' for the three 
modes corresponding to (7), (8), and (9), respectively [Ferraro 
and Plumpton, 1966]. For angles away from the extreme cases 
of 0 = 0 ø and 90 ø the Alfv6n mode is generally the least 
damped, and the slow magnetosonic mode is the most heavily 
damped (ll > co/3). 

As the wave number increases, the AlfvEn and slow 
magnetosonic waves go to resonances or to a heavily damped 
ion acoustic wave (co = kcs), but the fast magnetosonic wave 
transforms into a lightly damped whistler mode 

co -• [2• + [2,c•'k •' cos O/co, •' (10) 

As its phase velocity increases for co > [2i, the whistler becomes 
an electron mode, essentially independent of the ions. 

For/• - 1.0 the dispersion curves are somewhat different. 
The Alfv6n mode satisfying (8) remains, but the other two 
modes do not correspond to MHD waves in the small wave 
number limit. In particular, MHD theory predicts that there is 
a mode at co/kz < t•A [e.g., Ferraro and Plumpton, 1966, p. 75]. 
We find no such mode, but in agreement with the high 
results of Barnes [1966] we obtain a wave which lies at VA < 
co/kz < cs. 

We will denote the high/• modes by the names shown in 
Figure 3. The mode of fastest phase speed we continue to call 
fast magnetosonic, the mode characterized by (8) we continue 
to refer to as Alfv6n, and we assign the appellation slow 
magnetosonic to the remaining mode via elimination. The lat- 
ter assignment is not inappropriate, however, since this wave 
remains the most heavily damped of the three. In fact, the slow 
magnetosonic wave never goes unstable for the drift velocities 
considered in this paper; since it therefore will not interest us 
further, we will use the term magnetosonic as referring to the 
fast mode exclusively. 

Whistler 

• _- S"g i + •-•--• c2k2cos 0 
(Upe 

(u Fast _ 

,O,i Magnetosonic /•// ..- - /. - 
_ 

SIo 

5///½/ •Aif•z•VnA Magnetosonic ! 
i0 '2 

-2 -I 
o io i 

ka i 
Fig. 3. Frequencies as a function of wave number for low- 

frequency waves from the linear dispersion relation. Parameters are as 
given in Table 1, except/•, = 1.00. As in Figure 2, Voc = v0• = 0, and 
cos 0 = 0.50. A dotted line indicates that the wave has become heavily 
damped. 

45 ø A If v•n Macj netoson ic 
135 ø 

0.0 0.5 

Fig. 4. Contours of constant 3/ as a function of wave vector k. 
Parameters are as given in Table 1, except t)A2/c 2 - 2.65 X 10 -8. Here 
v0c = 2.42vA. The Allyfin instability lies at 45 ø < 0 < 90 ø , the 
magnetosonic instability at 90 ø < 0 < 180 ø, and the whistler instability 
is outside of the figure at ka, >> 1, 0 = 180 ø. Dashed lines indicate 3/= 
10-4•2,; solid lines indicate 3/ = 10-•2•; a cross denotes a local max- 
imum in 3/. 

3. LINEAR DISPERSION RELATION: INSTABILITIES 

Forslund [ 1970] showed that a variety of plasma waves could 
be driven unstable in the solar wind by the collisional skewing 
of an electron distribution function bearing a large heat flux. 
In particular, he concluded that under conditions appropriate 
to the solar wind at 1 AU (Te • T• and finite /•), two 
electromagnetic modes should become unstable: the fast 
magnetosonic wave, propagating in the antisolar direction, 
and an electromagnetic ion cyclotron instability, topologically 
equivalent to the co = kd;a Alfv•n mode. (Forslund also con- 
sidered two other modes, the ion acoustic instability and the 
electrostatic ion cyclotron instability. Both have threshold 
drift speeds substantially above t;a under the conditions con- 
sidered in this paper; therefore we did not find them unstable, 
and we will not discuss them here.) 

Schulz and Et;iatar [1972] concluded that for growth rates 
based on counterstreaming Maxwellian electrons and ions, the 
Alfvfin mode is stable and the solar-directed magnetosonic in- 
stability should be dominant. However, Forslund et al. [1971] 
(see also Fried et al. [1971], comment by D. W. Forslund (as 
added to the paper by Barnes [1972]), and D. W. Forslund and 
J. M. Kindel, unpublished manuscript, 1975))numerically 
solved the electromagnetic dispersion relation for Maxwellian 
electrons drifting in relation to Maxwellian ions. For Te = Tt 
their results are that among current-driven instabilities the 
Alfv•n mode has the lowest instability threshold for/• > 10 -•. 
(Note added in proof: An earlier paper involving a two-com- 
ponent electron distribution is the paper by Sudan [1965] which 
showed that an electron heat flux could drive the k ll Bo whistler 
unstable.) 

To resolve these differences, we numerically solved the dis- 
persion relation using the single ion and two electron compo- 
nents described in section 2. When t;oc g 0, we found three dis- 
tinct instabilities [Gary et al., 1975]: the Alfvfin wave 
propagating toward the sun and the magnetosonic and 
whistler waves propagating in the antisolar direction. Figures 
1 and 2 of Gary et al. [1975] display growth rates ('y) as a func- 
tion of wave number k for representative 0; Figure 4 of this 
paper shows 'y for the Alfv•n and magnetosonic modes as a 
function of the wave vector k. For this set of parameters the 
Alfv•n instability propagates at a large angle to Bo and in a 
comparatively narrow range of 0; the magnetosonic mode is 
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below the ion cyclotron frequency, •.: fast 2) It has a substantial electrostatic com- 
magnetosonic, Alfven and slow magnetosonic (cf. pon•nt; the electric field fluctuations parallel 
A, B, and C, respectively, in Figure 1). All to k (SEii) are about 2.5 times those perpendicular 
three modes are damped, but the slow mode • _•k c to the wave vector (•Eñ) at maximum growth rate is the most heavily damped and will not further z s ß 
enter into our discussion. An important mode not 3) It is a resonant instability driven by the 
represented in Figure i is the whistle• mode, the core electrons drifting relative to the ionsß 
high frequency extension of the magnetosonic wave: This mode would be unstable even if the halo were 

• absent and the electrons consisted of a single m •. + e 2k2 1 2 c cos 8. (5) (current carrying) component with drift velocity 
m greater than the Alfv• n speedß To study heat flux •iven instabilities, we 

then set vn• • 0 and first looked at wave propa- Turning our attention to propagation in the 
gation in •e solar direction (the direction of antisolar direction, we found a variety of in- 
the core drift). The only significant change was stabilities. These are represented in Figure 2 
that the Alfvgn mode became unstable. A repre- where, in contrast to Figure l, the coordinates 
sentative plot of frequency and growth rate vs are scaled logarithmically. These instabilities 
wave number at cos e = 0.15 is shown in Figure 1. are all associated with the "•ast" branch of the 
(The ion Larmor radius is denoted by a.. Note dispersion relation As shown in Figure 2 the I ' ' 

also that positive velocities point sunward. ) magnetosonic wave (ka• < l) is unstable in two 
Important characteristics of this instabilitv are: regimes, and the whistler mode (ka_. > l) is 

strongly unstable for 4 < kay. < 7. These in- 
1) It has low phase speed, m/k << VA, but it • ~ stabilities exhibit the following characteristics- 

is unstable only when propagating at la•ge angles 
to the magnetic field and w/k_ _• l) The phase speeds of the magnetosonic modes range of unstable wave number• v A for the whole are Just above VA; for the whistler, m/k >> v A. 

I.O 

O. 5 

0.5 1.0 

ka• 

$ 

!( •i XI• 

Figure 1 

Frequencies (solid lines) and growth rate (dotted 
line) as a function of wavenumber for solar di- 
rected waves from the electromagnetic linear 
dispersion relation. Three MaxwellJan components 
are used: protons (i), cool electrons (C) and 
hot electrons (H). TC = 2Ti, TH = 12 Ti; nc = 
0.95 n i, n H -- 0.05 n i; V0c = 2.42 v A; •i = 

Ti/Bo 2 /mpi = 2 8wni• = 0.25; •i 2 2 Bo2/•wmi n c = o 

2.65 x 10 -8 Here cos 8 = 0.15 where 8 is the ß 

angle between • and • . A is the stable fast 
magnetosonic wave, B •øs AlFv6n instability, and 
C is the heavily damped slow magnetosonic wave. 

2) The cone of instability and maximuml growth 
rate ¾max occur at successively smaller e as k increases (see the caption of Figure 2). The 
Truax for the whistler lies at 8 = 0 ø. 

Figure 2 

Frequencies (solid lines) and growth rates (dot- 
ted lines) as a function of wavenumber for unstable 
antisolar directed waves from the electromagnetic 
linear dispersion relation. The parameters are 
the same as in Figure l, with the exception of 
the angle of propagation: For magnetosonic wave 
D, cos 8 = 0.60; for magnetosonic wave E, cos 8 
= 0.80; for whistler mode F, cos 8 = 1.00. The 
frequency for mode E is not shown, but generally 
lies between the frequencies for modes D and F. 

Instability	  was	  studied	  by	  Gary	  (1975)	  
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Quataert	  (1998)	  looked	  at	  
relaIve	  heaIng	  rates	  with	  
no	  dri.	  and	  single	  e	  
populaIon	  –	  we	  can	  
replicate	  his	  result	  

HeaIng	  rates	  and	  energy	  exchange	   k	  ρi	  =	  0.1	  

k	  ρi	  =	  0.3	  

k	  ρi	  =	  0.7	  

k	  ρi	  =	  1	  

Tc	  =	  Ti	  and	  βe	  =	  1	  here	  
	  
We	  get	  instability	  (driven	  clearly	  by	  core)	  
We	  get	  enhanced	  electron	  heaIng	  of	  halo	  
We	  get	  energy	  exchange	  between	  core	  and	  halo	  

	  	  -‐	  core	  energy	  heats	  halo…	  	  
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Reference Mission: Launch and 
Mission Design Overview 
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Launch 
 Dates: Jul 31 – Aug 19, 2018 (20 days) 
 Max. Launch C3: 154 km2/s2  
 Requires Atlas V 551/Delta IVH class 

with project-provided Upper Stage 
 

Trajectory Design 
 24 Orbits 
 7 Venus gravity assist flybys 

 
Final Solar Orbits 
 Perihelion: 9.86 RS 
 Aphelion: 0.73 AU 
 Inclination: 3.4 deg from ecliptic  
 Orbit period: 88 days 

 
Mission duration: 7 years 

Sun 

Venus 

Mercury 

Earth 

Launch 
7/31/2018 

1st Min 
Perihelion 
at 9.86 RS 

12/19/2024 

1st Perihelion 
at 35.7 RS 
11/1/2018 
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4-12 



Solar Probe Plus 
A NASA Mission to Touch the Sun 

Solar Probe Plus Preliminary Design Review   January 13-16, 2014  

Reference Vehicle:  
Ram  Facing View 

4-13 

Electric Field Sensor 



Plasma	  environment	  

3/27/14	  

Parameters ~10+Rs+Typical 55+Rs+Typical 1+AU+Typical
Magnetic)Field |B0|)~)δB 2000)nT 70)nT 6)nT
Electric)Field |E|)~)vswB0 100)mV/m 30)mV/m 3)mV/m
Density ne)~)δne 7000)cmA3 120)cmA3 7)cmA3

Electron)Temperature Te 85)eV 25)eV 8)eV
Solar)Wind)Speed vsw 210)km/s 400)km/s 450)km/s
Alfven)Speed vA 500)km/s 125)km/s 45)km/s
Plasma)Frequency fpe 750)kHz 100)kHz 24)kHz
Electron)Gyrofrequency fce 60)kHz 2)kHz 160)Hz
Proton)Gyrofrequency fci 32)Hz 1)Hz 0.1)Hz
Convected)Debye)Scale vsw/λD 250)kHz)(4)µs) 125)kHz)(8)µs) 45)kHz)(22)µs)
Convected)Electron)Inertial)Length vsw/(c/ωpe) 3.5)kHz)(0.3)ms) 825)Hz)(1.2)ms) 180)Hz)(5.5)ms)
Convected)Ion)Inertial)Length vsw/(c/ωpi) 75)Hz)(13)ms) 20)Hz)(50)ms) 4)Hz)(250)ms)
Convected)Ion)Gyroradius vsw/ρi 300)Hz)(3)ms) 35)Hz)(30)ms) 5)Hz)(200)ms)
DC/LF)Electric)Fluctuations δEA)~)vA)δBA 1)V/m 10)mV/m 1)mV/m
Kinetic)Electric)Fluctuations δEL 1)V/m 70)mV/m 10)mV/m



δB	  fluctuaIon	  levels?	  
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TransiIon	  from	  Spitzer-‐Härm	  to	  a	  
collisionless	  regime	  

Stuart	  D.	  Bale,	  Marc	  Pulupa,	  Chadi	  Salem,	  
Chris	  Chen,	  Eliot	  Quataert	  

University	  of	  California,	  Berkeley	  



you’re	  required	  to	  have	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  which	  is	  in	  fact	  consistent	  with	  
measurements	  of	  the	  radial	  electron	  temperature	  profile…	  	  	  So	  that’s	  prezy	  
compelling.	  	  This	  is	  the	  basis	  of	  Chapman’s	  solar	  wind	  model	  	  
(h/s	  equil	  +	  q)	  

Collisional	  transport	  theory	  
Spitzer-‐Härm	  (S-‐H)	  transport	  assumes	  that	  plasma	  is	  highly	  collisional:	  

	  -‐	  f(v)	  remains	  ~Maxwellian	  as	  it	  convects	  through	  a	  temperature	  gradient	  LT	  	  
	  -‐	  λfp/LT	  (Knudsen	  number)	  is	  a	  small	  parameter	  and	  required	  for	   	   	  
	  proporIonality	  of	  q||	  and	  dT/dr	  

qSH = �SHrkTe SH ⇠ 3.16
ne Te⌧e
me

SH / T 5/2
e

L = 4⇡r2qk = const

Te ⇠ r�2/7

Maximum	  available	  heat	  flux	  (in	  subsonic	  wind	  ve>>vsw)	  is	  so-‐called	  ‘saturaIon	  flux’	  
	  -‐	  q0	  =	  3/2	  n	  kbT	  ve	  	  (thermal	  convecIon	  of	  full	  thermal	  energy)	  
	  -‐	  q0	  heat	  flux	  is	  consistent	  with	  adiabaIc	  (T~r-‐4/3)	  expansion	  at	  large	  radius,	  but	  not	  

r-‐2/7	  
	  

where	   and	  

…so	  that	  

Then	  if	  you	  want	  constant	  (conducIve)	  luminosity	  



Some	  previous	  measurements	  

(4) and !ee is given by equation (10). Using the power law
Te / r!", the scale LT of the temperature gradient can be
expressed as

LT ¼ @

@r
lnTe

! "!1

¼ R

"
ð12Þ

at the distance of R ¼ 1 AU. The smaller the ratio Lfp=LT ,
the higher the collision rate. The advantage of using this
parameter instead of the collisional age Ae is that it allows a
direct comparison between the observed heat flux and the
heat flux predicted by the SH theory. To be exact, we com-
pare here the normalized heat fluxQn (eq. [2]) and a normal-
ized SH heat flux, Qn;SH, i.e., the SH heat flux Qe;SH (eq. [7])
normalized to the free-streaming heat flux Q0 (eq. [3]) as
well. This normalized SH heat flux can then be expressed as
a linear function of the ratio Lfp=LT ,

Qn;SH ¼ Qe;SH

Q0
¼ 1:07

Lfp

LT
: ð13Þ

The comparison is shown in Figure 8. Figure 8a displays a

scatter plot of Qn as a function of Lfp=LT for the low-pres-
sure and free solar wind (not compressed and not connected
to the Earth’s bow shock). Figure 8b gives the average value
m and the standard deviation # of the same quantity, in
equal bins of Lfp=LT : the solid line represents the averagem,
and the dashed lines representm% #, respectively. The solid
line labeled SH in both panels represents the normalized SH
heat flux of equation (13). There is a tendency for Qn to be
larger when Lfp=LT is large (Fig. 8b). Thus, Qn tends to be
larger when there are fewer collisions. This property is
another indication that Coulomb collisions play a role in
regulating the heat flux.

Furthermore, Figure 8 shows another interesting prop-
erty of the observed heat flux. Although the collisional SH
heat flux represents indeed an upper limit to the observed
heat flux, it appears that the electron heat flux in the solar
wind reaches the SH limit for small values of the ratio
Lfp=LT , say Lfp=LT < 0:2. In contrast, for Lfp=LT > 0:2,
the observed heat flux is smaller than the SH prediction, as
has always been argued (see Scime et al. 1994a). This dis-
crepancy grows stronger asLfp=LT increases. It is important
to note in this respect the differences between the slow and
the fast wind, still within the ambient low-pressure solar
wind. This can be seen in Figure 9, which displays Qn as a
function of Lfp=LT for a slow solar wind (Vsw < 400 km s!1;
Fig. 9a) and for a fast wind (Vsw > 650 km s!1; Fig. 9b).
Figure 9b shows that the SH limit is not reached within the
fast wind where Lfp=LT is usually larger than in the slow
wind. In this case, the observed heat flux is nearly 1 order of
magnitude below the SH limit.

6. CONCLUSIONS

In this study, we have investigated the properties of solar
wind electrons at 1 AU using data from theWind spacecraft,
the aim being to determine what physical processes control
the electron properties in the solar wind. We examined in
particular the nonthermal features of the electron distribu-
tion functions, such as temperature anisotropy and heat
flux. The question addressed here concerns essentially the
role of Coulomb collisions in regulating these nonthermal
characteristics. According to different authors, the electron
temperature anisotropy Tek=Te? in the solar wind mainly
appears to depend on the wind speedVsw, on the densityNe,
on the heliomagnetic latitude $m, or on the time. We have
shown that Tek=Te? actually depends on the collisonal age
Ae of the solar wind plasma, i.e., the number of transverse
Coulomb collisions suffered by a thermal electron during its
travel over the scale (0.5 AU) of the density gradient. Ae

depends on Vsw and Ne, and thus on $m; it depends also on
the time, before or after the crossing of the heliospheric cur-
rent sheet or the SI. The collisional age Ae is thus the physi-
cal parameter that controls the temperature anisotropy
Tek=Te? in the solar wind, but it does not control the elec-
tron temperature itself because the energy exchanges due to
collisions are much weaker than the momentum exchanges.
No correlation has been found between the electron temper-
ature and other solar wind parameters (see also Newbury et
al. 1998). The basic mechanisms that regulate the electron
temperature in the solar wind are still not understood.

Another indication of the part played by the Coulomb
collisions in the solar wind is the value Qe of the observed
heat flux. We have shown the importance of distinguishing
between two different wind regimes: the high-pressure

Fig. 8.—Fifty consecutive days. Eleven minute averages of the normal-
ized heat fluxQn (eq. [2]) in the low-pressure and free (i.e., not connected to
the Earth’s bow shock) solar wind as a function of the ratio between the
electron mean free path Lfp (eq. [11]) and the scale of the temperature gra-
dient LT (eq. [12]). (a) Scatter plot. (b) Average m (solid line) and standard
deviation # (m% #; dashed lines) in equal bins of Lfp=LT . The solid line SH
in both panels is the normalized heat flux predicted by the classical Spitzer-
Härm collisional theory (eq. [13]).
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Figure 11. Ulysses observations and the (a) Thermal gradient 
electron heat flux based on core temperature gradient. (b) 
Thermal gradient heat flux based on halo temperature gradient 
(note different scale). (c) Cuperman et al. [1988] predicted 
electron heat flux, equation (17). (d) Feldman et al. [1975] bi- 
Maxwellian empirical electron heat flux model. (e) Solid line: 
whistler heat flux instability threshold, equation (23). Dashed 
line: modified whistler heat flux instability threshold, equation 
(24). 

14221 [gWrn_2 ] (16) qlle(R)= R2'34(0.9R)2 +1 

responsible for the observed heat flux dissipation. Therefore it 
appears coincidental that use of the core temperature gradient 
from an obviously two population solar wind electron distribution 
yields a Spitzer-H•i rm heat flux at 1 AU that is comparable to the 
observations. 

Refined two fluid model predicted electron heat flux. 
Recent, more complex, treatments of the electron hea t flux 
regulation process fall into two categories: those which refine the 
basic two-fluid model of the solar wind and those which include 
the heat flux limiting effects of instabilities. The electron heat 
flux predicted by a two-fluid model incorporating coupled 
electron and proton collisional thermal conductivities [ Cuperman 
et al., 1988] is given by 

( me •{' Tp h5/2 {, V rrp 3k7'2Te5'2•7,lTe •'•7LyjtyJ t•7rTe) 
qe- •.•--•-•e4•ee l- -- •15• • (17) 

1 q T• 

where •ee is the electron-electron Coulomb logarithm. Within a 
scaling factor, the factor outside the square bracket on the right- 
hand side of (17) is the Braginskii collisional thermal 
conductivity. The thermal conductivities were derived for a 
moderately non-Maxwellian plasma relaxing via a RMJ-Fokker- 
Planck collision operator [Cuperman et al., 1988]. Secondary 
effects, such as non-Maxwellian particle distributions, are ignored 
in the evolution of the model. For the proton and core electron 
temperatures measured by Ulysses and a solar wind speed of 450 
km S 'l , (17) reduces to 

= 18 [gWrn_2 ] (18) qe R 4'03][0.9R12 + 1 
Equation (18) and .the Ulysses measurements are compared in 
Figure 11 c. Although, this treatment of the heat flux yields heat 
flux magnitudes in agreement with the observations at 1 AU, the 
collisional nature of the model still dominates the radial scaling 
(qe" R'4'6) of the predicted electron heat flux. The radial scaling 
demonstrates the inadequacies of the Cuperman et al. [1988] two- 
fluid model and adds supports the conclusion that no collisional 
model can explain the observed heat flux dissipation. 

Phenomenological model for the electron heat flux. Before 
delving into a particular instability limited heat flux model, a 
brief physical description and historical background can provide 
important insight into how instabilities could be responsible for 
heat flux regulation. Feldman et al. [1975] showed that for bi- 
Maxwellian core and halo distributions with nonzero drift 

velocities relative to the bulk plasma, the electron heat flux is 
given by 

which is nearly two orders of magnitude larger than the observed 
total heat flux (see Figure 1 lb) and another factor of 3 larger than 
the intrinsic halo heat flux (see Figure 6b). The simple Spitzer- 
I-[i rm formalism neither fits the data nor is appropriate for the 
halo electrons because the theory is collisional and the halo 
population is collisionless. 

The difference in heat flux magnitude and radial scaling as 
predicted by the simple collisional model of (15) is sufficient to 
conclude that simple collisional processes alone cannot be 

1 

qe=•k(nHAVH)[3(TiiH-Tiic)+2(T_•-T_Lc)] (19) 
where AVH is the average halo drift speed in the total electron 
frame. Essentially, this empirical formula attributes the entire 
electron heat flux to the bulk motion of the halo electrons relative 

to the total electron frame. The magnitude and radial scaling of 
(19) are compared with the observations in Figure 11 d. The radial 
scaling of (19): 

	  
–	  very	  suggesIve	  of	  S-‐H	  regulaIon	  

Scime	  et	  al.	  (1994)	  

‘core’	  SH	  hea{lux	  too	  small	  
‘halo’	  SH	  hea{lux	  too	  big	  
bi-‐Max	  model	  is	  just	  right	  	  

Feldman	  papers	  



S-‐H	  to	  collisionless	  (?)	  

Spitzer-Härm collisionless

q0

2	  years	  of	  solar	  min	  
2	  years	  of	  solar	  max	  
	  
Modes	  of	  jPDF	  of	  q||/q0	  vs	  λfp/LT	  
	  
q||	  is	  field-‐aligned	  hf	  
q0	  is	  saturaIon	  hf	  
λfp	  is	  collisional	  mfp	  
LT	  is	  Te	  gradient	  scale	  	  
	  
65%	  of	  data	  is	  SH/collisional	  
35%	  of	  data	  is	  collisionless	  
	  
Collisionless	  limit	  q||	  ~	  0.3	  q0	  
Never	  reaches	  q0	  
This	  is	  α=2/7	  –	  if	  we	  fit	  the	  SH	  data	  to	  the	  
curve,	  we	  get	  	  
80%	  of	  2/7	  (α	  =	  0.23	  or	  so)	  
2/7	  =	  ~0.286	  
Marsch	  et	  al.,	  1989	  
	  
Diagonal	  line	  is:	  
	  

qSH

q0
= 1.07

�fp

LT



β-‐dependence	  and	  instabiliIes	  

Gary	  et	  al	  (1994)	  marginal	  
instability	  thresholds:	  
	  -‐	  whistler	  
	  -‐	  magnetosonic	  
	  -‐	  short	  wavelength	  Alfven	  
	  
These	  instabiliIes	  can	  choke	  
off	  the	  heat	  flux	  (at	  the	  
expense	  of	  wave	  growth)	  
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three heat flux instabilities and by showing that, for a halo 
that is relatively isotropic in its own frame, the whistler heat 
flux instability is the mode most likely to arise. 

Gary el al. [1974, 1975] used linear Vlasov theory with a 
model of bi-Maxwellian halo and core components to show 
that three heat flux modes might grow in the solar wind 
near i AU: the whistler, the magnetosonic, and the Alfv6n 
instabilities. Figure 5 of Gary el al. [1975] showed that the 
whistler instability typically had the lowest threshold at 0.20 
•/•llc, that the magnetosonic heat flux instability thresh- 

old was competitive with that of the whistler at/•ll c • 0.20, 
and that the Alfv6n heat flux instability threshold was sim- 
ilar to that of the whistler instability only at •lc • 1. 

Here we recast the results of Gary el al. [1975] to fa- 
cilitate comparison with observations by expressing the in- 
stability thresholds in terms of the total electron heat flux 
q• through (1), and normalize that quantity in terms of 
qmax. We also consider a somewhat higher threshold here 
(tim - 10-3•p) than in the work by Gary et al. [1975]. 
We suspect that even this growth rate may be too small to 
correspond to thresholds that may be observed in the solar 
wind; nevertheless, we use this value for illustrative pur- 
poses and then utilize a larger maximum growth rate when 
we discuss parametric variations of the whistler threshold 
in the next section. 

The results here and in section 4 are based on the set of 
dimensionless parameters stated in Table i and first used by 
Gary el al. [1975]. These parameters are, for the most part, 
average values derived from solar wind observations near 1 
AU [Feldman el al., 1975] and are used as a baseline for 
our study of local scalings of instability thresholds. 

Figure i illustrates the thresholds of three heat flux in- 
stabilities as a function of/•llc for the parameters of Table 
1. Because the magnetosonic heat flux instability does not 
attain ffm •_ 10-3•p for these parameters at/•ll c • 0.10, 
the conclusion here is stronger than that inferred from Fig- 
ure 5 of Gary el al. [1975]: if both the core and halo are 
isotropic in their own frames of reference, the whistler heat 
flux instability has the lowest threshold of the three grow- 
ing modes for/•llc • 0.10. At/• values smaller than those 
shown in the figure, the Alfv6n instability assumes the low- 
est threshold value, but in this regime qe 00 qraax, a value 
considerably larger than that typically observed in the solar 
wind. Thus we conclude that, for dimensionless parame- 
ters similar to those stated in Table 1, and in particular for 
conditions such that the core and halo components are rela- 
tively isotropic in their own frames of reference, the whistler 
heat flux instability is the growing mode of lowest threshold 
if qe • qma•c. 

Table 1. Parameter Model From Gary el al. [1975] 
Core Halo 

Parameter Protons Electrons Electrons 

raj/rap 1.0 1/1836 1/1836 
ej/ep 1.0 -1.0 -1.0 
nj/ne 1.0 i - nn/n• 0.05 
Tllj/Tll p 1.0 2.0 12.0 
Tñj/Tll j 1.0 1.0 1.0 

VA/C-- 1X10 -4 

1 

qmax 

o • o o 

0.1 ,,-, 1.0 4.0 

•11c 
Figure 1. The dimensionless electron heat flux as a 

function of the parallel core/• at the ?m - 10-3•p thresh- 
olds of the whistler (solid squares), magnetosonic (open tri- 
angles), and Alfv6n (open circles) heat flux instabilities. 
The solid line is the least squares fit to the whistler thresh- 
old, equation (3a). Unless stated otherwise, the dimension- 
less parameters in Figures i through 8 are as given in Table 
1. 

4. Whistler Heat Flux Instability: Local Model 

In this section we use linear Vlasov dispersion theory for 
the two electron component model to establish parametric 
dependences of the threshold condition for the whistler heat 
flux instability. Because the whistler propagates with maxi- 
mum growth rate at propagation parallel to the background 
magnetic field Bo = •Bo [Gary ½t al., 1975], we here con- 
sider only the case k x Bo = 0. In this section we consider 
a local model in which the baseline dimensionless param- 
eters are given in Table !. As in the previous section we 
frame the core average drift speed dependence in terms of 
the total electron heat flux q• through (1), and normalize 
the heat flux in terms of qraax. We then vary four dimen- 
sionless parameters in succession to understand how each 
contributes to the qe versus/•llc relationship at threshold. 

Our calculations of instability threshold are quite differ- 
ent from the earlier attempt of Gary and Feldman [1977]. 
In that paper, we used analytic theory to obtain an approx- 
imate expression which depended upon the wavenumber at 
maximum growth rate, a quantity that is not directly ob- 
servable by present-day spacecraft instruments. Here we use 
numerical solutions of the complete linear Vlasov dispersion 
equation with a least squares fitting procedure to obtain 
threshold conditions which are fully expressed in terms of 
observable parameters, thereby making possible direct com- 
parison of theory and experiment. In this manuscript we 
use an analytic derivation (see the appendix) only as a sec- 
ondary tool to provide guidelines for the appropriate forms 
of the/•llc, nh/ne, and Tñh/Tll • dependences of the thresh- 
old condition obtained from the computer results. 

Figure 2 shows the thresholds of the whistler heat flux 
instability at three different values of maximum growth 
rate. As is the case with other electromagnetic instabilities 
(e.g., the proton cyclotron anisotropy instability discussed 
by Gary and Lee [1994]), increasing the value of 
raises the anisotropy corresponding to threshold, but does 
not significantly alter the exponent of the component par- 
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magnetosonic

whistler

Modes	  of	  q||/q0	  vs	  λfp/LT	  
	  
Broken	  into	  4	  intervals	  of	  
electron	  thermal	  β	

	

λfp	  maps	  to	  β	  –	  high	  β	  is	  biased	  
to	  small	  λfp/LT	  
	  
Fit	  to	  S-‐H	  relaIonship	  requires	  
a	  β-‐dependent	  α	  (T	  ~	  r-‐α)	  
	  
Gary	  et	  al	  (1994)	  marginal	  
instability	  thresholds:	  
	  -‐	  whistler	  (blue	  dozed	  lines)	  
overconstrains	  the	  data	  
	  -‐	  magnetosonic	  (red	  dozed	  
lines)	  looks	  good	  in	  collisionless	  
regime.	  	  Who	  would’ve	  
thought?	  
-‐	  Mach	  number?	  

Magnetosonic	  

Whistler	  



Flux-‐limited	  SH	  

(Shvarts	  et	  al.,	  PRL	  ,	  1981)	   (Shkarofsky,	  PoF	  ,	  1983)	  

Moments	  of	  Boltzman	  EquaIon	  
(with	  cos(th)	  perturbaIon)	  
	  
Limit	  f1	  to	  f0	  (f1	  becomes	  f0	  in	  an	  
ad	  hoc	  way)	  	  



Outline	  and	  Summary	  
•  Electron	  velocity	  ‘core’	  measurements	  

–  Old	  stuff	  –	  Feldman	  1975,	  Scime	  1998	  
–  Instability	  calculaIon	  –	  Gary	  1975	  

•  Precision	  electron	  velocity	  measurements	  
–  Wind/3DP	  measurements	  
–  Monopole	  spacecra.	  potenIal	  correcIon	  with	  QTN	  
–  f(ve)	  fits	  to	  core	  and	  halo	  

•  Core	  electron-‐proton	  dri.	  
–  Large	  dri.s	  –	  in	  any	  units	  (vsw,	  vA,	  cS,	  or	  even	  km/s!)	  

•  Core	  dri.	  modifies	  KAW	  damping	  rates	  
•  Hea{lux	  transiIon	  from	  Spitzer-‐Härm	  to	  something	  else	  
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