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Capitalizing on a 
better understanding of 

plasma turbulence 
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Many thanks to several              
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Towards a virtual fusion device?! 

GENE simulation of ASDEX Upgrade 



Coupling GENE and TRINITY 
Idea: 

Get turbulent 
fluxes from 

GENE 

Evolve 
profiles with 

TRINITY 

AUG #13151 (H-mode) 
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Computational cost much lower than 
for flux-driven global simulations, 
but still too high for frequent usage 

ASTRA 

TRINITY 
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Dimensional reduction techniques 
•  Often, one is mainly interested in large scale dynamics. 
   There, one finds an interesting interplay between linear 
   (drive) and nonlinear (damping) physics. – Is it possible 
   to remove the small scales? 
  

•  Yes: Large Eddy Simulation (LES), POD etc. 
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Turbulence in fluids and plasmas – 
Three basic scenarios 

…in collaboration with P. W. Terry 
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Excitation of damped eigenmodes 
Using GENE as a linear eigenvalue solver to analyze 
nonlinear ITG runs via projection methods, one finds… 

unstable 
eigenmode 

least damped eigenmode 

ky=0.3 
drive range 

strongly damped 
eigenmodes 

(fine-scale structure 
in v║ and z) 
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Energetics in wavenumber space 

Damped eigenmodes are responsible for 
significant dissipation in the drive range (!) 

7 Hatch, Terry, Jenko, Merz & Nevins, PRL 2011 



Resulting spectrum decays exponentially 
@lo k, asymptotes to power law @hi k 

Hatch et al., PRL 2011 
Terry et al., PoP 2012 8 

nonlinear energy transfer rate 



Bañón Navarro et al., PRL 2011 

Shell-to-shell transfer of free energy 

ITG turbulence (adiabatic electrons); 
logarithmically spaced shells 
 
Entropy contribution dominates; 
exhibits very local, forward cascade 

9 



M
orel et al., P

oP 2011  
Application: Gyrokinetic LES models 

Substantial savings in computational cost: Here, a factor of 20 10 
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II. LES FORMALISM IN GYROKINETICS

In the following, the nonlinear gyrokinetic equations
are solved by means of the GENE code9. Although a
more comprehensive code version including nonlocal ef-
fects is at hand10, for simplicity we restrict ourselves
here to the local code version. Only electrostatic fluc-
tuations are considered, with a fixed background mag-
netic field B0 and adiabatic electrons. Field aligned
coordinates are used11, with the assumption of circu-
lar concentric flux surfaces12. The GENE code uses a
delta-f splitting of the unknown distribution function:
Fi = F0i + fki with the normalized equilibrium distri-

bution function F0i = e−v2
�−µB0 , where µ = miv2⊥/(2B0)

is the ion magnetic moment (mass mi), v⊥ and v� are
respectively the velocity coordinates perpendicular and
parallel to the magnetic field. Unknowns are Fourier
transformed along coordinates perpendicular to the mag-
netic field (x, y) → (kx, ky). The collisionless gyrokinetic
Vlasov equation for ions guiding center distribution func-
tion fki(kx, ky, z, v�, µ, t) then reads:

∂tfki = L[fki] +N [φk, fki]−D[fki], (1)

where L represents linear terms, N the quadratic nonlin-
earity, and D the numerical dissipation terms.

The linear terms can be written as L = LB0 +LG+L�,
where LG[fki] is the drive due to logarithmic density
and temperature gradients (ωni and ωTi), LB0 [fki] cor-
responds to both the curvature and the gradient of the
magnetic field B0 (referred to as “curvature” in the fol-
lowing), and L�[fki] is the term describing the parallel
dynamics:

LG[fki] = −
�
ωni +

�
v2� + µB0 −

3

2

�
ωTi

�
F0iikyJ0kφk ,

(2)

LB0 [fki] = −
Ti0(2v2� + µB0)

ZiTe0B0
[Kxikx +Kyiky]hki , (3)

L�[fki] = −vTi

2

�
∂z lnF0 ∂v�hki − ∂v� lnF0 ∂zhki

�
. (4)

Here, hki = fki + ZiF0iJ0kφkTe0/Ti0 is the nonadiabatic
part of the distribution function, with the ions charge
number Zi and the ion thermal velocity vTi. Ti0 and
Te0 are, respectively, the ion and electron equilibrium
temperature, J0k is the zeroth order Bessel function cor-
responding to Fourier transformed gyroaverage operator,
and φk is the electrostatic potential. The two terms Kx

and Ky are due to magnetic field curvature and gradient
introduced by the magnetic geometry12.

N is the nonlinear term describing the perpendicular
advection of the distribution function by the E×B drift
velocity:

N [φk, fki] = −
�

k�
x,y

(k�xky − kxk
�
y)J0k�φk�f(k−k�)i , (5)

which has the fundamental role of coupling different per-
pendicular kx and ky modes.
Numerical dissipation terms in GENE have the general

form:

D[fki] = axk
n
xfki + ayk

n
y fki + az∂

4
zfki + av�∂

4
v�
fki , (6)

where the coefficients ax and ay are usually set to zero,
while az = 0.1 and av� = 1 have been shown to be well
adapted in a wide range of cases13.
The electrostatic potential φk is given by the quasi

neutrality equation:

φk−�φk�FS
+
ZiTe0

Ti0
[1− Γ0 (bi)]φk = πB0

�
dv�dµJ0kfk ,

(7)
where �φk�FS

=
��

Jdzφk

�
/
��

Jdz
�
, stands for the flux

surface average of the electrostatic potential, Γ0(bi) is
the modified Bessel function applied to the argument
bi = v2Tik

2
⊥/Ω

2
ci. Electrons are assumed adiabatic: ne =

qene0 (φk − �φk�FS
) /Te0. Since a single gyrokinetic ion

species is considered, the species indices are omitted in
the following for the ions distribution function: fk = fki.

A. Filtered gyrokinetics

In a gyrokinetic LES, the most suitable coordinate
subspace for coarsening the grid is the perpendicular
wavenumber plane (kx, ky) since it generally requires
fairly high resolution. Obviously, the objective of the
LES technique is to reduce the number of grid points in
(kx, ky) space. The coarsening procedure can be imple-
mented by applying a Fourier low-pass filter, with the
characteristic length ∆. The employed cut-off filtering
has the effect of setting to zero the smallest scales charac-
terized by all modes larger than 1/∆, as shown in Fig. 1.
If one denotes the action of the filter on the unknowns
by · · ·, the filtered gyrokinetic equation reads:

∂tfk = L[fk] +N [φk, fk] + T∆,∆DNS −D[fk] , (8)

where a new term appears from the filtering of the non-
linear term:

T∆,∆DNS = N [φk, fk]−N [φk, fk] . (9)

At this point, it is important to note that Eq. (9) is the
only term which contains the influence of the scales ∆DNS

which we want to filter out from (φk, fk). We will refer
to it as sub-grid term in the following. The GyroLES
then consists of finding a good model replacing this term
which only depends on the resolved unknowns (φk, fk),
on the characteristic length of the filter ∆, and on some
free parameters {cn}.
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LES filter in DNS domain: 

Sub-grid term: 

4

one can expect that a large majority of the free energy

injection will not be affected by the filtering: G ≈ G. It

follows that the DNS dissipation can be approximated by

D ≈ D − T∆,∆DNS .

The existence of inverse and non-local cascading pro-

cesses resulting from interaction between bulk turbulence

and the zonal flows is correctly described by the model,

assuming that the bulk turbulence corresponds to the re-

solved free energy injection G. In particular, the Dimits

nonlinear upshift
21

has been shown to be correctly de-

scribed by GyroLES type models.
6
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FIG. 2. Contribution of the sub-grid term to the free energy
balance as a function of time, for different test-filter widths
∆.

The time evolution of the sub-grid contribution to the

filtered free energy balance (parameters associated to Cy-

clone Base Case (CBC) detailed in Sec. IV), is shown in

Fig. 2 for different values of the filter width ∆. The sub-

grid contribution is the same order as the resolved dissi-

pations T∆,∆DNS ≈ −D ≈ −G/2 in the quasi-stationnary

regime of interest here. The sub-grid contribution is al-

ways negative, implying that the sub-grid scales act as

a free energy sink, like it is supposed to.
6
More pre-

cisely, one observes that the amplitude of the dissipation

ensured by the sub-grid scales increases with the filter

width. This means that a model M should behave like

M(c,∆, fk) = ∆
α
M �

(c, fk) ≈ T∆,∆DNS .

B. A model for sub-grid scales

A simple dissipative model for GyroLES which has al-

ready been used previously
6
is given by

M(c⊥, fki) = c⊥k
4
⊥hki . (18)

The optimal value of c⊥ for the CBC parameters can be

found, e.g., through trial and error. However, this model

is not taking into account the filter width dependency ∆

observed in the previous section. Moreover, the use of

k⊥ implies that the relative dissipation in kx and ky is

fixed. A more flexible model which takes into account the

anisotropy (cx and cy) and the filter width dependency

(∆x,y) is given by

M =

�
∆

α
xcxk

n
x +∆

α
y cyk

n
y

�
hki . (19)

In fluid turbulence, it is common to assume that the

kinetic energy flux from scale to scale is a constant in

the inertial range. Based on the recent finding that ITG

turbulence also exhibits a local and direct cascade of free

energy
2
, we assume, in close analogy, that the free energy

flux εE is constant from scale to scale in the (kx, ky)
plane perpendicular to the magnetic field. Anisotropy is

taken into account by letting the free energy flux taking

different values along kx and ky, namely εE,x and εE,y.
The free energy has the dimension of an energy density,

so that the free energy flux εE is an energy density per

time,

[εE ] = �−1τ−3 ,

where τ and � represent characteristic time and length

scales. It is reasonable to assume that the model depends

only on the free energy fluxes εE,x, εE,y and the filter

widths ∆x,∆y,

M =

�
εβE,x∆

α
xk

n
x + εβE,y∆

α
y k

n
y

�
hki .

Moreover, from dimensional analysis we know that

[M ] = τ−1
[hk], so that β = 1/3 and α = n + 1/3. The

last relation allows to fix the unknown filter width expo-

nent α accordingly to the model parameter n. The model

thus becomes

M =

�
cx∆

n+1/3
x knx + cy∆

n+1/3
y kny

�
hki . (20)

Since the derivative order n is positive, the filter width

exponent α = n + 1/3 is also positive, in line with the

numerical results in the previous section. Moreover, the

model coefficients are dimensionally related to the con-

stant free energy fluxes across scales via [cx] = [cy] =

[εE,x]1/3 , [cy] = [εE,y]1/3. It is interesting to note here

that the model coefficients are constants, just like the

free energy fluxes.

C. Dynamic procedure for gyrokinetics

The dynamic procedure is based on the introduction

of an additional filter denoted by �· · · and referred to as

the test-filter. It is characterized by a filter width �∆ that

corresponds to a “very coarse” grid: �∆ > ∆ > ∆
DNS

.

≈ 
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via

d2 =

��
T�∆,∆ + �M∆ −M�∆

�2
�

Λ

, (26)

where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
in terms of the model amplitudes cx and cy according to

d2 =

��
T�∆,∆ + cxmx + cymy

�2
�

Λ

, (27)

where the notations mx,y =
�
∆

α
x,y − �∆α

x,y

�
knx,y�hk have

been introduced.
An optimization of this difference with respect to the

unknown parameters (∂d2/∂cx = 0 and ∂d2/∂cy = 0)
leads to the expressions

cx =

�
mxT�∆,∆

�

Λ

�
m2

y

�
Λ
−
�
myT�∆,∆

�

Λ
�mymx�Λ

�mxmy�2Λ − �m2
x�Λ

�
m2

y

�
Λ

(28)

cy =

�
myT�∆,∆

�

Λ

�
m2

x

�
Λ
−
�
mxT�∆,∆

�

Λ
�mymx�Λ

�mxmy�2Λ − �m2
x�Λ

�
m2

y

�
Λ

.(29)

Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via
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where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
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= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
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where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via
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where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via
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where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-
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LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
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where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via

d2 =

��
T�∆,∆ + �M∆ −M�∆

�2
�

Λ

, (26)

where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
in terms of the model amplitudes cx and cy according to

d2 =
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T�∆,∆ + cxmx + cymy

�2
�

Λ

, (27)

where the notations mx,y =
�
∆

α
x,y − �∆α

x,y

�
knx,y�hk have

been introduced.
An optimization of this difference with respect to the

unknown parameters (∂d2/∂cx = 0 and ∂d2/∂cy = 0)
leads to the expressions
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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FIG. 1. Schematic view of a Large Eddy Simulation: The
smallest scales (grey area between dashed-dotted and dotted
lines) are retained only in a DNS, while they are modeled in
a LES model; LES only retain the area inside the dashed-
dotted line; alternatively or additionally, a test filter can be
used (hatched area, solid line).

B. Free energy and sub-grid term

As has been shown both theoretically14–17 and

numerically18–20, the free energy is a relevant quantity

for studying gyrokinetic turbulence. The free energy is

defined as:

E =
n0iT0i

V T0e

�

kx

�

ky

�
πdzdv�dµ

h−kifki
2F0i

, (10)

with the volume V =
�

kx

�
ky

�
dz/B0.

The dynamics of the quantity E can be derived from

Eq. (1) by the action of the “free energy operator” Ξ on

the distribution function fki: E =
1
2Ξ[fki] with

Ξ[ξk] =
n0iT0i

V T0e

�

kx

�

ky

�
πdzdv�dµ

h−ki

F0i
ξk . (11)

One thus obtains:

∂tE = G −D , (12)

with the definitions

G = Ξ [LG[fki]] , D = Ξ [D[fki]] . (13)

This balance is of particular relevance for the design

of a good model. As pointed out in Ref.15, Eq. (12)

involves only quantities which are quadratic in the dis-

tribution function, like the kinetic energy in fluid turbu-

lence. Moreover, like the latter quantity, the free energy

is injected at large scales by the background gradients

and dissipated at various smaller scales by the dissipation

terms D. It is important to note in this context that the

parallel advection term (L�), the magnetic term (LB0),

and the nonlinear term (N) have a null contribution to

the total free energy balance.

III. DEVELOPING A GYROKINETIC LES MODEL

As is well known, a naive truncation of small scales

can lead to a pile-up of free energy at the smallest

scales which are retained in the filtered simulation.6 A

good LES model is thus required to dissipate the correct

amount of free energy. In the following, the role of sub-

grid terms in the free energy balance will be studied in

detail. A model will then be developed which agrees as

much as possible with the desired sub-grid properties.

A. Sub-grid term and dissipation of free energy

The nonlinear term has the fundamental role of trans-

ferring free energy across perpendicular scales, as well

as across parallel space scales and perpendicular velocity

scales, that are of lower interest in the present work with

respect to the aim of filtering out perpendicular scales.

These transfers have a globally null contribution to the

free energy:

Ξ [N [φk, fk]] = 0 , (14)

simply reflecting the fact that the nonlinearity has a Pois-

son bracket structure and, consequently, it vanishes upon

integration. For the same reason, if a filter is introduced,

the following property holds:

Ξ
�
N [φk, fk]

�
= 0 , (15)

where Ξ is the filtered free energy operator defined in

the filtered space. On the contrary, the filtered free en-

ergy operator has a non vanishing contribution when it

is applied to the sub-grid term:

T∆,∆DNS = Ξ[T∆,∆DNS ] = Ξ
�
N [φk, fk]−N [φk, fk]

�

= Ξ
�
N [φk, fk]

�
. (16)

The filtered free energy balance can then be expressed

as

∂tE = G + T∆,∆DNS −D , (17)

where filtered quantities are obtained from the action of

the filtered free energy operator Ξ on the filtered gyroki-

netic equation (8).

Recalling that the free energy is assumed to be injected

at large scales, then transferred to smaller scales and dis-

sipated there, one can expect that the sub-grid contribu-

tion to free energy balance (16) will be negative. Indeed,
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FIG. 4. Free energy spectra (Ekx at top, Eky at bottom) for
the fourth-order model (M4) at reduced resolution, compared
with a highly resolved DNS and the case without a model
(M0).

bustness of the LES approach is tested for two values of

the temperature gradient which differ from the nominal

value; these correspond to a weakly driven turbulence

case (ωTi = 6.0) and to a strongly driven turbulence case

(ωTi = 8.0).
The case of weakly driven ITG turbulence is shown in

Fig. 5. The M4 model yields a very reasonable agreement

with the DNS regarding both the free energy spectrum

Eky and the free energy injection spectrum Gky . The

total values EM4 = 0.99 EDNS and QM4 = 0.75QDNS are

also in good agreement. Without a model, one obtains

EM0 = 1.79 EDNS and QM0 = 1.04QDNS. The latter result

is accidental, however, and results from a compensation

between an underestimation at large scales and an over-

estimation at small ones.

Fig. 6 displays the results for the case of strongly driven

ITG turbulence. The LES is found to systematically

overestimate the DNS free energy spectrum Eky , while

the prediction of the free energy injection spectrum Gky

is in reasonable agreement. One finds EM4 = 1.67 EDNS
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FIG. 5. Wavenumber spectra Eky (at top) and Gky (at bot-
tom): Comparison between DNS and LES for the case of
weakly driven ITG turbulence at ωTi = 6.0.

and QM4 = 1.14QDNS, whereas the values exhibit a

substantial disagreement without a model, according to

EM0 = 3.00 EDNS and QM0 = 1.42QDNS.

In summary, the LES model leads to a far better agree-

ment with the reference DNS than the runs without a

model. As far as the overall heat flux levels (which are of

prime importance) are concerned, the relative error with

respect to the reference DNS is acceptable, amounting to

less than 30% in all three cases considered. The model

amplitudes cx and cy computed dynamically are found

to be quite robust when varying the temperature gra-

dient. The mean values are cx = 0.0155, cy = 0.0179
in the weakly driven case, cx = 0.0140, cy = 0.0212 for

the CBC, and cx = 0.0140, cy = 0.0219 for the strongly

driven case.

C. Robustness while varying the magnetic shear

Next, we would like to investigate the robustness

of the LES approach with respect to variations of

Free energy spectra 
(w/ and w/o model) 

Morel et al., 
PoP 2012  

LES techniques are likely to reduce the simulation effort 
substantially without introducing many free parameters. 

This offers an interesting perspective… 12 



Summary and 
perspectives 
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Trying to tackle plasma turbulence 

Ab initio simulations will remain very challenging (although 
invaluable), despite continuing growth in computer power 
 
Quasilinear models can be extremely useful but fail to capture 
important nonlinear effects; thus, they must sometimes be 
complemented (or replaced) by nonlinear simulations 
 
This motivates the search for reliable but minimal models; 
Large Eddy Simulations represent one such line of research 
 
In general, we are in need of a still better understanding of 
plasma turbulence in order to model it efficiently 
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