

Tom Bird Max Planck Institut für Plasmaphysik, Greifswald

6th Gyrokinetics Working Group Meeting

In collaboration with:

C. Hegna University of Wisconsin, Madison F. Jenko, D. Told, T. Görler, P. Xanthopoulos Max Planck Institut für Plasmaphysik, Garching & Greifswald

Acknowledgements: Jim Callen (Wisconsin), Gabe Plunk and Per Helander (IPP Greifswald), N. Ferraro (GA), F. Merz (RZG) and the members of the ITPA working group on 3D MHD deformations.

- Overview of experimental ELM mitigation results
- The physics of 3D local shear modulation
- Gyrokinetics in nonaxisymmetric configurations
- The effect of near-resonant Pfirsch-Schlüter currents on turbulence
- A quick look at turbulence in the presence of general, centimeter-sized 3-D deformations

ELM mitigation is essential for ITER

- The type-I ELMy H-mode will be the standard operation regime for ITER
- Our best guess for the energy loss due to ELMs in this scenario is:

from: $\Delta W / Wped \sim 5-10\%$ (5-10MJ per ELM) up to: $\Delta W / Wped \sim 20\%$ (~20MJ) [Loarte et al PPCF 2003]

- This could raise the temperature of the divertor materials to >3000°C in less than a millisecond.
- These heat loads could significantly reduce the lifetime of plasma facing components (or worse).
- The plan is to mitigate these losses with either pellet pacing or by applying 3D magnetic fields with the IVCC.

RMP experiments have produced widely varying results.

IPP

- One key distinction: Mitigation vs Suppression
- Density pumpout: commonly seen in DIII-D, MAST but not ASDEX-U
- Enhanced transport: not observed in ASDEX-U

- often observed in DIII-D, MAST

(especially during suppression)

- RMPs can modify:
 - Magnetic topology
 - Plasma rotation
 - Turbulent transport, through:
 - Linear microinstability physics
 - Nonlinear saturation physics
 - Magnetic flutter induced transport
 - MHD stability

Explored in recent papers by Leconte and Diamond.

Focus of this talk

The plasma response to 3-D perturbations is quite complicated.

- In toroidally rotating plasmas, radial magnetic perturbations are shielded at their rational surfaces
 - Screening due to the perpendicular electron velocity
 - Resonant b_r reduced by 1-2 orders of magnitude typically
- The plasma response often amplifies non-resonant radial perturbations

[N. Ferraro, PoP 2012, see also: Y. Liu et al, NF 2011, M. Becoulet et al, NF 2012]

What halts the pedestal advance during ELM suppression?

Figure 6. Lower divertor D_{α} signals showing the ELM characteristics in similar ISS plasmas with n = 3 I-coil currents of (a) 6.3 kA, (b) 4.0 kA and (c) 0 kA. Pedestal profiles showing the (d) density, (e) ion temperature, (f) electron temperature, (g) absolute value of the total pressure gradient and (h) C⁶⁺ toroidal rotation for the 3 I-coil currents shown in (a), (b) and (c) where black, red and green correspond to 6.3 kA, 4.0 kA and 0 kA, respectively.

- During ELM suppression, the peak pedestal pressure gradient is lowered
- Something other than ELMs is limiting the inward growth of the pedestal (thus precluding the crossing of the P-B stability boundary)
- Hypothesis presented here:

- 3-D fields can limit the achievable pressure gradient in radially localized regions via microinstability destabilization (e.g. KBMs)

In many cases there is evidence of enhanced anomalous transport.

• In both MAST and DIII-D there is clear evidence of enhanced transport in many cases, as can be seen in the profiles:

[I. Chapman et al, NF 2012]

 BES measurements of density fluctuations also show a sensitivity to the RMP strength:

I-coil modulation experiments at DIII-D demonstrate a clear effect on turbulence.

Ibb

Fig. 5. (a) Spectrogram of density fluctuations from BES during a modulated RMP ELM-suppressed discharge, (b) internal coil current (suppressed zero), (c) integrated low-k fluctuation evolution at ρ =0.88, (d) relation of density fluctautions to local density.

[G. McKee et al, IAEA 2012]

In this work we examine how 3-D fields can affect microinstabilities in the pedestal.

- KBMs are primary candidates to explain transport in the pedestal:
 - Success of EPED
 - Gyrokinetic stability calculations of MAST equilibria by D.Dickinson (PPCF 2011, PRL 2012)
 - Global gyrokinetic stability calculations by W. Wan et al

(PRL 2012)

- BES fluctuation measurements during QH-mode at DIII-D

(Z. Yan et al, PRL 2011)

- Somewhat different results found in recent paper by E. Wang et al (NF 2012)
- The bulk of this talk will examine how resonant Pfirsch-Schlüter currents driven by 3-D components of |B| can affect microinstabilities.

Ideal MHD exhibits singular currents at every rational surface in 3-D

• This is why solving ideal MHD equilibrium eqns in 3D is so challenging:

$$\nabla \cdot \mathbf{J} = 0 = \nabla \cdot \left(\frac{J_{\parallel} \mathbf{B}}{B} + \mathbf{J}_{\perp}\right),$$

$$\sum_{mn} \left(\frac{J_{\parallel}}{B}\right)_{mn} \left[m - nq(\psi)\right] \sin(m\Theta - n\Phi) \sim \frac{\partial p(\psi)}{\partial \psi} \sum_{mn} \left(\frac{1}{B_{mn}^2}\right)_{mn} \sin(m\Theta - n\Phi)$$

- At rational surfaces, more physics is needed:
 - In resistive MHD the singularities are resolved by island formation.

- In reality, there is a competition between MHD forces trying to create islands and a kinetic response which screens the island-producing currents.

- See details in: C. C. Hegna, "Kinetic shielding of magnetic islands in 3D equilibria", PPCF 2011

Near-resonant Pfirsch-Schlüter currents substantially modulate the local magnetic shear.

• The Pfirsch-Schlüter current spectrum is given by:

$$(\vec{B} \cdot \nabla)\lambda = 2\mu_0\kappa_g \frac{|\nabla\psi|}{B} \qquad \lambda_{mn} \sim \frac{(RHS)_{mn}}{q - m/n}$$

• The local magnetic shear can be decomposed into:

$$s = \frac{|\nabla \psi|^2}{B^2} (\vec{B} \cdot \nabla) [\iota' \zeta + D]$$

Shearing due to parallel currents

• The Pfirsch-Schlüter current enters via:

$$(\vec{B} \cdot \nabla)D = \iota' \left(\frac{B^2}{|\nabla \psi|^2} \frac{1}{\left\langle \frac{B^2}{|\nabla \psi|^2} \right\rangle} - \frac{1}{\sqrt{g}} \right) + p' \left(\frac{B^2}{|\nabla \psi|^2} \lambda - \frac{B^2}{|\nabla \psi|^2} \frac{\left\langle \frac{B^2}{|\nabla \psi|^2} \lambda \right\rangle}{\left\langle \frac{B^2}{|\nabla \psi|^2} \right\rangle} \right) + 2 \left(\frac{B^2}{|\nabla \psi|^2} \frac{\left\langle \frac{B^2}{|\nabla \psi|^2} \tau_n \right\rangle}{\left\langle \frac{B^2}{|\nabla \psi|^2} \right\rangle} - \frac{B^2}{|\nabla \psi|^2} \tau_n \right)$$
Shearing due to variation in [B]

Throughout this work we use 3-D local equilibria

- Described in: [C.C. Hegna, PoP 2000]
- A 3D generalization of the Miller model [Miller et al PoP 1998]

3D perturbations with a broad poloidal mode spectrum are used.

$$R = R(\Theta) + \sum_{i} \gamma_{i} cos(M\Theta - N\zeta)$$
$$Z = Z(\Theta) + \sum_{i} \gamma_{i} sin(M\Theta - N\zeta)$$

- Axisymmetric shaping:
 - $A = R_0 / \rho = 3.17$ $\delta = 0.416$ $\kappa = 1.66$ $s_{\kappa} = 0.70$ $s_{\delta} = 1.37$ $\delta_r R_0 = -0.354$
- (same parameters as used in Miller PoP 98)
- x 10⁻⁹ q=3.01 q=3.03 q=3.07 b,/B0 3 4 5 6 7 8 9 10 11 12 13

M

• N = 3

 $M = 4 \rightarrow 14$

Only the local magnetic shear is appreciably modified.

IPP

A value of 0.01 corresponds to a 1% perturbation

Linear, infinite-n ideal MHD ballooning stability is substantially modified.

Details can be found in: T.M. Bird, C.C. Hegna, "A model for microinstability destabilization and enhanced transport in the presence of shielded 3-D magnetic perturbations", NF 2013.

Local shear modulation is the culprit.

Figure 5. Contours of the local magnetic shear for (a) the axisymmetric base case, and 3D equilibrium with (b) q = 3.07, (c) q = 3.03 and (d) q = 3.01. The thick black line marks the zero contour of the local magnetic shear, the thick blue line (which runs nearly parallel to $\Theta = \pm 1$) marks the zero contour of the normal curvature (which is negative near $\Theta = 0$), and the thick white line shows the path of a magnetic field line which passes through ($\Theta = 0, \zeta = 0$).

There is a strong dependence on field line label.

- Some field lines are stabilized, others are destabilized.
- Why? Consider the ballooning equation:
- Growth rate ~ (stabilizing field line bending) vs (destabilizing pressure/curvature drive)
- The stabilizing effect of field line bending is intimately related to the local magnetic shear.

This effect is sensitive to the phase of the perturbations

The full surface version of GENE

- Numerically, nearly identical to the radially global GENE version (i.e. Görler et al, JCP 2011)
- Doubly periodic finite difference grid covering the entire poloidal plane.
- Gyroaveraging via Lagrange interpolation of the fields.
- Caveat: still local in the radial direction!
- Exhaustively tested for single species, adiabatic electron runs good scaling (70-80% efficiency) up to 32,768 cores on IFERC.
- Functioning with kinetic electrons, electromagnetic effects, finite beta.

The effect of nonaxisymmetry on gyrokinetics.

- In 3D: different field lines can have very different stability properties
- The binormal wavevector is no longer a meaningful quantum number even linear instabilities have a complicated spectrum in ky-space.
- Gyroaveraging requires interpolation of the fields along the actual particle orbits.

The linear mode structure can be significantly more complicated than pp in axisymmetry.

W7-X

The rho*->0 limit

- For NCSX, different field lines have similar properties
- Basic code check: as rho*->0, full surface result converges to flux tube results

- Still an open question: what should happen as rho*->0 when different field lines have different properties?

A few comments

These runs are at low shear (s < 0.1) and high pressure gradient (alpha_mhd
1) due to a historical accident

- The large pressure gradient amplifies the effect of the 3D perturbations

- The pedestal pressure gradient is generally even larger than what I've used here

- However, the focus of this work at the moment is just to start taking a look at the basic microinstability physics

- Everything here will be electrostatic with adiabatic electrons. Modeling the pedestal more accurately in the future will require a lot more physics (sheared ExB flow, kinetic electrons, electromagnetic effects, etc...)

- There is a decent agreement between some things seen in these simulations and some experimental results already, but I wouldn't put too much weight behind it.

Flux tube ITG simulations match the MHD results

- 3-D flux tube simulations (analogous to infinite-n ballooning)
- Again, some field lines are destabilized and others stabilized
- However, local calculations underestimate the heat flux through the full-fluxsurface

For linear ITGs, the full surface is actually stabilized.

• Adiabatic electrons

- No density gradient
- rho* = 0.005 = 1/200

However, the full surface is nonlinearly destabilized.

New modes exist in the system (compared to axisymmetry)

• Zonal flows still active, though less effective (nonlinear upshift in the critical gradient still present here).

Long range poloidal correlations change significantly.

In nonaxisymmetry, the ky=0 modes tend to have finite k_parallel.

The cascade of electrostatic energy in 3D

- Previous calculations used a 1mm perturbation and focused on resonant effects – essentially only the local magnetic shear was perturbed.
- With ~cm level 3-D displacements, most MHD equilibrium quantities see a non-trivial perturbation.
- How big of a displacement is necessary for the transition to "3D turbulence"?
- What is the effect of more general (i.e. non-resonant) 3-D deformations on turbulence?

[I. Chapman et al PPCF 2012, L. Lao et al APS 2005, I. Chapman et al NF 2007]

- 3cm single helicity displacement (M=6, N=3) at q=3.15 surface
- Corresponds to br / B0 ~ 5e-2

The normal curvature is significantly modulated

The normal curvature is significantly modulated

This effect was studied in the recent paper by I. Chapman et al (NF 2012):

Modulation of |B| is still to small to affect neoclassical transport

• 1/nu transport scales like:

$$rac{D_{1/
u}}{D_{gB}}\sim \epsilon_h^{3/2}rac{qA^{3/2}a}{
u_*R}\sim \epsilon_h^{3/2}rac{A^{1/2}q}{
u_*}$$

- And becomes important when: $\epsilon_h \sim \left(\frac{\nu_*}{qA^{1/2}}\right)^{2/3}$
- With $\nu_* \sim 0.2, q \sim 3, A \sim 3$ we would need: $\epsilon_h \sim 0.11$

How big of a 3D deformation is required to see 3-D features?

- Increased intermittency and enhanced transport can be seen even with a 1mm non-resonant perturbation.
- In MAST, increased intermittency has been observed with application of 3-D fields [P. Tamain et al, PPCF 2010].

How big of a 3D deformation is required to see 3-D features?

IPP

 Radially elongated coherent structures do not appear until the 3-D displacement reaches 5mm

- Pfirsch-Schlüter currents near rational surfaces can modulate the local magnetic shear and destabilize microinstabilities even for tiny perturbations.
- This mechanism could play a role in ELM suppression experiments, though this explanation is still speculative.
- The direct effect on linear micro instability seems to be fairly weak but there is lots of new nonlinear physics in 3-D.
- Centimeter-sized 3-D deformations can introduce non-trivial 3-D variation into most MHD equilibrium quantities – starts to make a Tokamak look like a Stellarator.
- There is still a lot of basic physics to study here, but a closer comparison with experiments will also be useful:
 - Collaboration with N. Ferraro at GA
 - Possible collaboration with MAST?
- The moral of the story:

- ELM mitigation is extremely messy, it would be surprising if any one effect can explain everything. Turbulence does seem to play a role in some DIII-D and MAST discharges, though.