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Outline

● Overview of experimental ELM mitigation results

● The physics of 3D local shear modulation

● Gyrokinetics in nonaxisymmetric configurations

● The effect of near-resonant Pfirsch-Schlüter currents on turbulence

● A quick look at turbulence in the presence of general, centimeter-sized 3-D 
deformations

 



  

ELM mitigation is essential for ITER

● The type-I ELMy H-mode will be the standard operation regime for ITER

● Our best guess for the energy loss due to ELMs in this scenario is:

from:    ∆W / Wped ~ 5-10% (5-10MJ per ELM)

up to:   ∆W / Wped ~ 20% (~20MJ )     [ Loarte et al PPCF 2003]

● This could raise the temperature of the divertor materials to >3000˚C in less 
than a millisecond.

● These heat loads could significantly reduce the lifetime of plasma facing 
components (or worse).  

● The plan is to mitigate these losses with either pellet pacing or by applying 
3D magnetic fields with the IVCC.



  

● One key distinction:   Mitigation vs Suppression 

● Density pumpout: commonly seen in DIII-D, MAST but not ASDEX-U

● Enhanced transport: - not observed in ASDEX-U

                                  - often observed in DIII-D, MAST 

(especially during suppression)

● RMPs can modify:

- Magnetic topology

- Plasma rotation

- Turbulent transport, through:

      - Linear microinstability physics

      - Nonlinear saturation physics

      - Magnetic flutter induced transport

- MHD stability

RMP experiments have produced widely varying results.

Focus of this talk

Explored in recent papers by 
Leconte and Diamond.



  

● In toroidally rotating plasmas, radial magnetic perturbations are shielded at 
their rational surfaces

  - Screening due to the perpendicular electron velocity

  - Resonant b_r reduced by 1-2 orders of magnitude typically

● The plasma response often amplifies non-resonant radial perturbations

The plasma response to 3-D perturbations is quite complicated.

[N. Ferraro, PoP 2012, see also: Y. Liu et al, NF 2011, M. Becoulet et al, NF 2012]



  

● During ELM suppression, the peak pedestal pressure gradient is lowered

● Something other than ELMs is limiting the inward growth of the pedestal

 (thus precluding the crossing of the P-B stability boundary)

● Hypothesis presented here:

- 3-D fields can limit the achievable pressure gradient in radially localized 
regions via microinstability destabilization ( e.g. KBMs )

What halts the pedestal advance during ELM suppression?



  

● In both MAST and DIII-D there is clear evidence of enhanced transport in 
many cases, as can be seen in the profiles:  

● BES measurements of density fluctuations also show a sensitivity to the 
RMP strength:  

In many cases there is evidence of enhanced anomalous 
transport.

[I. Chapman et al, NF 2012]

[Z. Yan et al, IAEA 2010]



  

I-coil modulation experiments at DIII-D demonstrate a clear 
effect on turbulence.

[G. McKee et al, IAEA 2012]



  

● KBMs are primary candidates to explain transport in the pedestal:  

- Success of EPED

- Gyrokinetic stability calculations of MAST equilibria by D.Dickinson

( PPCF 2011, PRL 2012 )

- Global gyrokinetic stability calculations by W. Wan et al 

( PRL 2012)

- BES fluctuation measurements during QH-mode at DIII-D

             ( Z. Yan et al, PRL 2011 )

- Somewhat different results found in recent paper by E. Wang et al

( NF 2012)

● The bulk of this talk will examine how resonant Pfirsch-Schlüter currents 
driven by 3-D components of |B| can affect microinstabilities.

In this work we examine how 3-D fields can affect 
microinstabilities in the pedestal.



  

● This is why solving ideal MHD equilibrium eqns in 3D is so challenging: 

 

● At rational surfaces, more physics is needed:

   - In resistive MHD the singularities are resolved by island formation.

   - In reality, there is a competition between MHD forces trying to create 
islands and a kinetic response which screens the island-producing currents.

   - See details in: C. C. Hegna, “Kinetic shielding of magnetic islands in 3D 
equilibria”, PPCF 2011 

     

Ideal MHD exhibits singular currents at every rational surface in 3-D



  

● The Pfirsch-Schlüter current spectrum is given by:

● The local magnetic shear can be decomposed into:

● The Pfirsch-Schlüter current enters via:

     

Near-resonant Pfirsch-Schlüter currents substantially modulate 
the local magnetic shear.

Shearing due to 
variation in |B|

Shearing due to 
parallel currents

Geometric 
shearing



  

Throughout this work we use 3-D local equilibria

● Described in: [C.C. Hegna, PoP 2000]

● A 3D generalization of the Miller model [Miller et al PoP 1998]

     



  

● Axisymmetric shaping:

● (same parameters as used in 
Miller PoP 98)

● N = 3

M = 4 → 14

3D perturbations with a broad poloidal mode spectrum are used.



  

Only the local magnetic shear is appreciably modified.

A value of 0.01 corresponds to a 1% perturbation



  

Linear, infinite-n ideal MHD ballooning stability is 
substantially modified.

Details can be found in: T.M. Bird, C.C. Hegna, “A model for microinstability 
destabilization and enhanced transport in the presence of shielded 3-D magnetic 
perturbations”, NF 2013.



  

Local shear modulation is the culprit.



  

There is a strong dependence on field line label.

● Some field lines are stabilized, others are destabilized.

● Why?  Consider the ballooning equation:

● Growth rate ~ (stabilizing field line bending) vs (destabilizing 
pressure/curvature drive)

● The stabilizing effect of field line bending is intimately related to the local 
magnetic shear.



  

This effect is sensitive to the phase of the perturbations



  

● Numerically, nearly identical to the radially global GENE version

(i.e. Görler et al, JCP 2011)

● Doubly periodic finite difference grid covering the entire poloidal plane.

● Gyroaveraging via Lagrange interpolation of the fields.

● Caveat: still local in the radial direction!

● Exhaustively tested for single species, adiabatic electron runs – good 
scaling (70-80% efficiency) up to 32,768 cores on IFERC.

● Functioning with kinetic electrons, electromagnetic effects, finite beta.

The full surface version of GENE



  

● In 3D: different field lines can have very different stability properties

● The binormal wavevector is no longer a meaningful quantum number – 
even linear instabilities have a complicated spectrum in ky-space.

● Gyroaveraging requires interpolation of the fields along the actual particle 
orbits.

The effect of nonaxisymmetry on gyrokinetics.



  

The linear mode structure can be significantly more complicated than 
in axisymmetry.

W7-X



  

The rho*->0 limit

- For NCSX, different field lines have similar properties

- Basic code check: as rho*->0, full surface result converges to flux tube results

- Still an open question: what should happen as rho*->0 when different field 
lines have different properties?



  

A few comments

- These runs are at low shear (s < 0.1) and high pressure gradient (alpha_mhd  
> 1) due to a historical accident

- The large pressure gradient amplifies the effect of the 3D perturbations

- The pedestal pressure gradient is generally even larger than what I've used 
here

- However, the focus of this work at the moment is just to start taking a look at 
the basic microinstability physics

- Everything here will be electrostatic with adiabatic electrons.  Modeling the 
pedestal more accurately in the future will require a lot more physics            
(sheared ExB flow, kinetic electrons, electromagnetic effects, etc...)

- There is a decent agreement between some things seen in these simulations 
and some experimental results already, but I wouldn't put too much weight 
behind it.



  

Flux tube ITG simulations match the MHD results

● 3-D flux tube simulations (analogous to infinite-n ballooning) 

● Again, some field lines are destabilized and others stabilized

● However, local calculations underestimate the heat flux through the full-flux-
surface 

- R/L_Ti = 15
- R/L_n = 0
- Adiabatic electrons



  

● Adiabatic electrons

● No density gradient

● rho* = 0.005 = 1/200

     

For linear ITGs, the full surface is actually stabilized.



  

However, the full surface is nonlinearly destabilized.



  

●

     

New modes exist in the system (compared to axisymmetry)

● Zonal flows still active, though less effective (nonlinear upshift in the critical 
gradient still present here).

     



  

●

     

Long range poloidal correlations change significantly.

Axisymmetric:

3D:



  

In nonaxisymmetry, the ky=0 modes tend to have finite 
k_parallel. 
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The cascade of electrostatic energy in 3D

2D Tokamak 3D Tokamak W7-X



  

● Previous calculations used a 1mm perturbation and focused on resonant 
effects – essentially only the local magnetic shear was perturbed.

● With ~cm level 3-D displacements, most MHD equilibrium quantities see a 
non-trivial perturbation.

● How big of a displacement is necessary for the transition to “3D 
turbulence”?

● What is the effect of more general ( i.e. non-resonant) 3-D deformations on 
turbulence?

MAST, JET, and DIII-D see ~cm displacements during RMP

[I. Chapman et al PPCF 2012, L. Lao et al APS 2005, I. Chapman et al NF 2007]



  

● 3cm single helicity displacement (M=6, N=3) at q=3.15 surface 

● Corresponds to br / B0 ~ 5e-2

Let's consider a 3cm, non-resonant perturbation.



  

The normal curvature is significantly modulated



  

The normal curvature is significantly modulated

This effect was studied in the recent paper by I. Chapman et al (NF 2012):



  

● 1/nu transport scales like:

● And becomes important when:

● With                                we would need:

Modulation of |B| is still to small to affect neoclassical transport



  

● Increased intermittency and enhanced transport can be seen even with a 
1mm non-resonant perturbation.

● In MAST, increased intermittency has been observed with application of 3-D 
fields [P. Tamain et al, PPCF 2010].

How big of a 3D deformation is required to see 3-D features?



  

● Radially elongated coherent structures do not appear until the 3-D 
displacement reaches 5mm

How big of a 3D deformation is required to see 3-D features?

Br ~ 1.7e-3 8e-3 1.e-2



  

● Pfirsch-Schlüter currents near rational surfaces can modulate the local magnetic 
shear and destabilize microinstabilities even for tiny perturbations.

● This mechanism could play a role in ELM suppression experiments, though this 
explanation is still speculative.

● The direct effect on linear micro instability seems to be fairly weak but there is lots of 
new nonlinear physics in 3-D.

● Centimeter-sized 3-D deformations can introduce non-trivial 3-D variation into most 
MHD equilibrium quantities – starts to make a Tokamak look like a Stellarator. 

● There is still a lot of basic physics to study here, but a closer comparison with 
experiments will also be useful:

- Collaboration with N. Ferraro at GA

- Possible collaboration with MAST?

● The moral of the story:

- ELM mitigation is extremely messy, it would be surprising if any one effect can 
explain everything.  Turbulence does seem to play a role in some DIII-D and 
MAST discharges, though.  

Conclusions
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