

Trapped-particle instabilities in quasi-isodynamic stellarators

Josefine H. E. Proll, Per Helander, Jack W. Connor, Gabriel G. Plunk

IPP Greifswald Stellarator Theory

Vienna, 19 March 2012

J.H.E. Proll, P. Helander, J.W. Connor, G.G. Plunk

Introduction

- optimised stellarators: reduced neoclassical transport
- How does this influence microinstabilities (and their turbulence)?

Distribution of b=8/8_{co} on the Last Closed Magnetic Surface

quasi-isodynamic stellarator, $\beta \approx 4\%$, figure courtesy of Y. Turkin

IPP Greifswald

Introduction

Electrostatic microinstabilities

- ion temperature gradient mode (ITG)
- electron temperature gradient mode (ETG)
- trapped-particle modes
 - trapped-electron mode (TEM)
 - collisionless TEM CTEM
 - dissipative TEM DTEM
 - trapped-ion mode (TIM)
 - collisionless TIM CTIM or CTPM (collisionless trapped-particle mode)
 - dissipative TIM DTIM or TIM
 - other (e.g. ubiquitous mode)

Introduction

- optimised stellarators: reduced neoclassical transport
- How does this influence microinstabilities (and their turbulence)?

We will demonstrate:

Quasi-isodynamic stellarators are immune to the collisionless trapped-particle instability and the ordinary TEM.

Quasi-isodynamic stellarators: reduced transport for both neoclassical and turbulent channels

Distribution of b+B/B_{op} on the Last Closed Magnetic Surface

quasi-isodynamic stellarator, $\beta \approx 4\%$, figure courtesy of Y. Turkin

Outline

Introduction

Properties of quasi-isodynamic stellarators

The energy budget of the instability

 g_a for low frequencies

Practical implications

Conclusions and Outlook

Outline

Introduction

Properties of quasi-isodynamic stellarators

The energy budget of the instability

g_a for low frequencies

Practical implications

Conclusions and Outlook

Properties of quasi-isodynamic stellarators needed

bounce averaged radial drift vanishes

$$rac{1}{ au_b}\int\limits_0^{ au_b} \mathbf{v}_d\cdot
abla\psi \; dt=0.$$

(with bounce time τ_b and drift velocity \mathbf{v}_d)

- parallel adiabatic invariant J constant on flux-surfaces
- ▶ maximum-*J* configuration: *J* has a maximum on the magnetic axis and $\partial J / \partial \psi < 0$, beneficial for stability
- direction of the precessional drift for max-J configuration

with the magnetic drift frequency $\omega_{da} = \mathbf{k}_{\perp} \cdot \mathbf{v}_{da}$ and the drift wave frequency $\omega_{*a} = (T_a k_\alpha / e_a) d \ln n_a / d\psi$

Outline

Introduction

Properties of quasi-isodynamic stellarators

The energy budget of the instability

g_a for low frequencies

Practical implications

Conclusions and Outlook

The set of equations

Electrostatic collisionless gyro-kinetic equation in ballooning space

$$i\mathbf{v}_{\parallel}
abla_{\parallel}\mathbf{g}_{a} + (\omega - \omega_{da})\mathbf{g}_{a} = rac{\mathbf{e}_{a}\phi}{\mathcal{T}_{a}}J_{0}(\mathbf{k}_{\perp}\mathbf{v}_{\perp}/\Omega_{a})\left(\omega - \omega_{*a}^{T}
ight)f_{a0}$$

with

$$f_{a} = f_{a0} - \frac{e_{a}\phi}{T_{a}}f_{a0} + \hat{g}_{a0}$$
$$\eta_{a} = d \ln T_{a}/d \ln n_{a}$$
$$\omega_{*a}^{T} = \omega_{*a}[1 + \eta_{a}(x^{2} - 3/2)], x^{2} = m_{a}v^{2}/2T_{a}$$

The set of equations

Electrostatic collisionless gyro-kinetic equation in ballooning space

$$i\mathbf{v}_{\parallel}
abla_{\parallel}\mathbf{g}_{a} + (\omega - \omega_{da})\mathbf{g}_{a} = rac{\mathbf{e}_{a}\phi}{\mathcal{T}_{a}}J_{0}(\mathbf{k}_{\perp}\mathbf{v}_{\perp}/\Omega_{a})\left(\omega - \omega_{*a}^{T}
ight)f_{a0}$$

with

$$f_{a} = f_{a0} - \frac{e_{a}\phi}{T_{a}}f_{a0} + \hat{g}_{a0}$$

$$\eta_{a} = d \ln T_{a}/d \ln n_{a}$$

$$\omega_{*a}^{T} = \omega_{*a}[1 + \eta_{a}(x^{2} - 3/2)], x^{2} = m_{a}v^{2}/2T_{a}$$

Close the system with the quasi-neutrality equation

$$\sum_{a} \frac{n_{a}e_{a}^{2}}{T_{a}} \phi = \sum_{a} e_{a} \int g_{a} J_{0} \mathrm{d}^{3} v$$

The energy budget of the system

local change of energy of the particle guiding centres species a

$$\frac{\mathrm{d} \mathcal{E}_{a}}{\mathrm{d} t} = -\frac{e_{a}}{2} \int \mathrm{d}^{3} \boldsymbol{\nu} \left[\hat{g}_{a}(\mathbf{R},t) \left(\boldsymbol{\nu}_{\parallel} \hat{\mathbf{b}} + \mathbf{v}_{da} \right) \cdot \nabla \langle \hat{\phi}^{*} \rangle_{\mathbf{R}} + c.c. \right]$$

The energy budget of the system

local change of energy of the particle guiding centres species a

$$\frac{\mathrm{d} \mathcal{E}_{a}}{\mathrm{d} t} = -\frac{e_{a}}{2} \int \mathrm{d}^{3} \boldsymbol{\nu} \left[\hat{g}_{a}(\mathbf{R},t) \left(\boldsymbol{\nu}_{\parallel} \hat{\mathbf{b}} + \mathbf{v}_{da} \right) \cdot \nabla \langle \hat{\phi}^{*} \rangle_{\mathbf{R}} + c.c. \right]$$

 \blacktriangleright use eikonal representation with $\nabla_{\parallel}S=0$ and $\nabla_{\perp}S={\bf k}_{\perp}$

$$\langle \hat{\phi} \rangle_{\mathsf{R}} \approx \left\langle \phi(\mathsf{R}) e^{i(S(\mathsf{R}+\rho)-\omega t)} \right\rangle_{\mathsf{R}} = \phi(\mathsf{R}) e^{i(S(\mathsf{R})-\omega t)} J_0\left(k_{\perp} v_{\perp}/\Omega_a\right)$$
$$\hat{g}_a(\mathsf{R},t) = g_a(\mathsf{R}) e^{i(S(\mathsf{R})-\omega t)}$$

The energy budget of the system

local change of energy of the particle guiding centres species a

$$\frac{\mathrm{d}E_a}{\mathrm{d}t} = -\frac{e_a}{2}\int \mathrm{d}^3\nu \left[\hat{g}_a(\mathbf{R},t)\left(\nu_{\parallel}\hat{\mathbf{b}}+\mathbf{v}_{da}\right)\cdot\nabla\langle\hat{\phi}^*\rangle_{\mathbf{R}}+c.c.\right]$$

 \blacktriangleright use eikonal representation with $\nabla_{\parallel} {\it S} = 0$ and $\nabla_{\perp} {\it S} = {\it k}_{\perp}$

$$\langle \hat{\phi} \rangle_{\mathsf{R}} \approx \left\langle \phi(\mathsf{R}) e^{i(S(\mathsf{R}+\rho)-\omega t)} \right\rangle_{\mathsf{R}} = \phi(\mathsf{R}) e^{i(S(\mathsf{R})-\omega t)} J_0\left(k_{\perp} v_{\perp}/\Omega_a\right)$$
$$\hat{g}_a(\mathsf{R},t) = g_a(\mathsf{R}) e^{i(S(\mathsf{R})-\omega t)}$$

▶ Integrate along the field line $\int \frac{dl}{B}$, average in time over one period and obtain with $\{...\} = \int \frac{dl}{B} \int d^3 v(...)$

$$P_{a} = \frac{\Omega_{a}}{2\pi} \int_{0}^{2\pi/\Omega_{a}} \mathrm{d}t \int \frac{\mathrm{d}I}{B} \frac{\mathrm{d}E_{a}}{\mathrm{d}t} = e_{a} \mathrm{Im} \left\{ (iv_{\parallel} \nabla_{\parallel} g_{a} - \omega_{da} g_{a}) \phi^{*} J_{0} \right\}$$

Energy budget obtained from the GK equation

- obtain P_a from gyro-kinetic equation:
 - multiply by $e_a J_0 \phi^*$ and sum over all species
 - integrate over velocity space and along the field line
 - take the imaginary part
 - define $\omega = \omega_r + i\gamma$

Energy budget obtained from the GK equation

- obtain P_a from gyro-kinetic equation:
 - multiply by $e_a J_0 \phi^*$ and sum over all species
 - integrate over velocity space and along the field line
 - take the imaginary part
 - define $\omega = \omega_r + i\gamma$

obtain a relation that describes the energy budget of the fluctuations

$$-\sum_{a} P_{a} = \gamma \sum_{a} \frac{n_{a} e_{a}^{2}}{T_{a}} \int \frac{\mathrm{d}I}{B} (1 - \Gamma_{0}) |\phi|^{2}$$

where

$$\Gamma_0(b) = n_a^{-1} \int J_0^2 f_{a0} d^3 v < 1$$

and

$$b = k_{\perp} (T_a/m_a)^{1/2}/\Omega_a.$$

Outline

Introduction

Properties of quasi-isodynamic stellarators

The energy budget of the instability

 g_a for low frequencies

Practical implications

Conclusions and Outlook

J.H.E. Proll, P. Helander, J.W. Connor, G.G. Plunk

Trapped-particle instabilities in quasi-isodynamic stellarators

IPP Greifswald

• consider $\omega \ll \omega_{ba}$, e.g.

- electrons in the case of ordinary TEMs
- both species for the collisionless trapped-ion modes ('collisionless trapped-particle instability')

• consider $\omega \ll \omega_{ba}$, e.g.

- electrons in the case of ordinary TEMs
- both species for the collisionless trapped-ion modes ('collisionless trapped-particle instability')

▶ Expanding the distribution function, $g_a = g_{a0} + g_{a1} + \cdots$, gives

$$g_{a0} = \frac{e_a \overline{J_0 \phi}}{T_a} \frac{\omega - \omega_{*a}^T}{\omega - \overline{\omega}_{da}} f_{a0}$$
$$iv_{\parallel} \nabla_{\parallel} g_{a1} = (\omega - \omega_{*a}^T) \frac{e_a}{T_a} \left(J_0 \phi - \frac{\omega - \omega_{da}}{\omega - \overline{\omega}_{da}} \overline{J_0 \phi} \right) f_{a0}$$

with the bounce average $\tau_b(\ldots) = \oint (\ldots) \frac{dI}{|V||}$

obtain for the energy transfer

$$P_{a} = \frac{e_{a}^{2}}{T_{a}} \operatorname{Im} \left\{ \left(\omega - \omega_{*a}^{T} \right) \left(\overline{|J_{0}\phi|^{2}} - \frac{\omega |\overline{J_{0}\phi}|^{2}}{\omega - \overline{\omega}_{da}} \right) f_{a0} \right\}$$

obtain for the energy transfer

$$P_{a} = \frac{e_{a}^{2}}{T_{a}} \operatorname{Im} \left\{ \left(\omega - \omega_{*a}^{\mathsf{T}} \right) \left(\overline{|J_{0}\phi|^{2}} - \frac{\omega |\overline{J_{0}\phi}|^{2}}{\omega - \overline{\omega}_{da}} \right) f_{a0} \right\}$$

▶ approach marginal stability $\gamma \rightarrow 0+$:

$$P_{a} = \frac{\pi e_{a}^{2}}{T_{a}} \left\{ \delta(\omega - \overline{\omega}_{da}) \overline{\omega}_{da} (\overline{\omega}_{da} - \omega_{*a}^{T}) |\overline{J_{0}\phi}|^{2} f_{a0} \right\}$$

obtain for the energy transfer

$$P_{a} = \frac{e_{a}^{2}}{T_{a}} \operatorname{Im} \left\{ \left(\omega - \omega_{*a}^{\mathsf{T}} \right) \left(\overline{|J_{0}\phi|^{2}} - \frac{\omega |\overline{J_{0}\phi}|^{2}}{\omega - \overline{\omega}_{da}} \right) f_{a0} \right\}$$

▶ approach marginal stability $\gamma \rightarrow 0+$:

$$P_{a} = \frac{\pi e_{a}^{2}}{T_{a}} \left\{ \delta(\omega - \overline{\omega}_{da}) \overline{\omega}_{da} (\overline{\omega}_{da} - \omega_{*a}^{T}) |\overline{J_{0}\phi}|^{2} f_{a0} \right\}$$

▶ assumptions:

- low temperature gradients $0 < \eta_a < 2/3$
- quasi-isodynamic configurations $\omega_{*a}\overline{\omega}_{da} < 0$

$$\Rightarrow$$
 P_a $>$ 0 for $\omega \ll \omega_{ba}$

obtain for the energy transfer

$$P_{a} = \frac{e_{a}^{2}}{T_{a}} \operatorname{Im} \left\{ \left(\omega - \omega_{*a}^{\mathsf{T}} \right) \left(\overline{|J_{0}\phi|^{2}} - \frac{\omega |\overline{J_{0}\phi}|^{2}}{\omega - \overline{\omega}_{da}} \right) f_{a0} \right\}$$

▶ approach marginal stability $\gamma \rightarrow 0+$:

$$P_{a} = \frac{\pi e_{a}^{2}}{T_{a}} \left\{ \delta(\omega - \overline{\omega}_{da}) \overline{\omega}_{da} (\overline{\omega}_{da} - \omega_{*a}^{T}) |\overline{J_{0}\phi}|^{2} f_{a0} \right\}$$

assumptions:

- low temperature gradients $0 < \eta_a < 2/3$
- quasi-isodynamic configurations $\omega_{*a}\overline{\omega}_{da} < 0$

 \Rightarrow P_a > 0 for $\omega \ll \omega_{ba}$

energy flows from the electric field fluctuations to plasma species a

• for $\omega \ll \omega_{bi}, \omega_{be}$ both $P_i, P_e > 0$

► for $\omega \ll \omega_{bi}, \omega_{be}$ both $P_i, P_e > 0$ remember $\sum_a P_a \propto \gamma = 0$

• for $\omega \ll \omega_{bi}, \omega_{be}$ both $P_i, P_e > 0$ remember $\sum_a P_a \propto \gamma = 0$ no point of marginal stability for the C-TPM

- for $\omega \ll \omega_{bi}, \omega_{be}$ both $P_i, P_e > 0$ remember $\sum_a P_a \propto \gamma = 0$ no point of marginal stability for the C-TPM
- for ω_{bi} ≃ ω ≪ ω_{be} only P_e > 0: electrons are stabilizing

13/18

IPP Greifswald

- for ω ≪ ω_{bi}, ω_{be} both P_i, P_e > 0 remember ∑_a P_a ∝ γ = 0 no point of marginal stability for the C-TPM
 for ω_{bi} ≃ ω ≪ ω_{be}
 - only $P_e > 0$: electrons are stabilizing no ordinary TEM, only ion-driven instabilities

13/18

IPP Greifswald

- for ω ≪ ω_{bi}, ω_{be} both P_i, P_e > 0 remember Σ_a P_a ∝ γ = 0 no point of marginal stability for the C-TPM
 for ω_{bi} ≃ ω ≪ ω_{be}
- For $\omega_{bi} \simeq \omega \ll \omega_{be}$ only $P_e > 0$: electrons are stabilizing no ordinary TEM, only ion-driven instabilities

Extension of an old result by Rosenbluth [Phys. Fluids 11, 869 (1968)] to

- an arbitrary number of particle species,
- Finite k⊥pa,
- ▶ finite $\eta_a < 2/3$
- finite ω/ω_{da}

Outline

Introduction

Properties of quasi-isodynamic stellarators

The energy budget of the instability

g_a for low frequencies

Practical implications

Conclusions and Outlook

J.H.E. Proll, P. Helander, J.W. Connor, G.G. Plunk

Trapped-particle instabilities in quasi-isodynamic stellarators

Ideal quasi-isodynamic stellarators

- for one of the most recent optimised stellarator configurations [Subbotin et al., Nucl. Fusion 46, (2006)]
- ω_{*a} · ω_{da} < 0 basically everywhere
- TEMs should be stable (awaiting confirmation through full flux surface GENE simulations, PhD project Greifswald)

 $\overline{\omega_{de}}$ of the quasi-isodynamic stellarator, $\beta \approx 4\%$, figure courtesy of Y. Turkin

Ideal quasi-isodynamic stellarators

- for one of the most recent optimised stellarator configurations [Subbotin et al., Nucl. Fusion 46, (2006)]
- ω_{*a} · ω_{da} < 0 basically everywhere
 </p>
- TEMs should be stable (awaiting confirmation through full flux surface GENE simulations, PhD project Greifswald)

 $\overline{\omega_{de}}$ of the quasi-isodynamic stellarator, $\beta \approx 2\%$, figure courtesy of Y. Turkin

 $[V_{d}|\Omega| a \cdot R_0 (\nabla \Theta \cdot t \nabla \phi) / V^2]_{bounceAveraged}$

Ideal quasi-isodynamic stellarators

- for one of the most recent optimised stellarator configurations [Subbotin et al., Nucl. Fusion 46, (2006)]
- ω_{*a} · ω_{da} < 0 basically everywhere
 </p>
- TEMs should be stable (awaiting confirmation through full flux surface GENE simulations, PhD project Greifswald)

 $\overline{\omega_{de}}$ of the quasi-isodynamic stellarator, $\beta \approx 2\%$, figure courtesy of Y. Turkin

Ideal quasi-isodynamic stellarators

- for one of the most recent optimised stellarator configurations [Subbotin et al., Nucl. Fusion 46, (2006)]
- ω_{*a} · ω_{da} < 0 basically everywhere
- TEMs should be stable (awaiting confirmation through full flux surface GENE simulations, PhD project Greifswald)

Distribution of b=B/B₀₀ on the Last Closed Magnetic Surface

B of the quasi-isodynamic stellarator, $\beta\approx 2\%,$ figure courtesy of Y. Turkin

- Wendelstein7-X: not perfectly quasi-isodynamic (see Per's talk)
- improves for higher
 β-values
- awaiting full flux surface GENE simulations

 $\overline{\omega_{de}}$ of SC- W7-X with $\beta =$ 0%, figure courtesy of Y. Turkin

- Wendelstein7-X: not perfectly quasi-isodynamic (see Per's talk)
- improves for higher
 β-values
- awaiting full flux surface GENE simulations

 $\overline{\omega_{de}}$ of SC- W7-X with $\beta=$ 2%, figure courtesy of Y. Turkin

- Wendelstein7-X: not perfectly quasi-isodynamic (see Per's talk)
- improves for higher
 β-values
- awaiting full flux surface GENE simulations

 $\overline{\omega_{de}}$ of SC- W7-X with $\beta =$ 4%, figure courtesy of Y. Turkin

- Wendelstein7-X: not perfectly quasi-isodynamic (see Per's talk)
- improves for higher
 β-values
- awaiting full flux surface GENE simulations

 $\overline{\omega_{de}}$ of SC- W7-X with $\beta=$ 4%, figure courtesy of Y. Turkin

- Wendelstein7-X: not perfectly quasi-isodynamic (see Per's talk)
- improves for higher
 β-values
- awaiting full flux surface GENE simulations

B of SC- W7-X with $\beta =$ 4%, figure courtesy of Y. Turkin

Outline

Introduction

Properties of quasi-isodynamic stellarators

The energy budget of the instability

g_a for low frequencies

Practical implications

Conclusions and Outlook

Conclusions and Outlook

Conclusions:

- for low frequencies, both the electrostatic collisionless trapped-particle instability and the ordinary TEM are stable in quasi-isodynamic configurations
- ▶ and more generally, in any omnigeneous, maximum-J configuration
- quasi-isodynamic stellarators: expect reduced neoclassical and TEM turbulent transport

Outlook:

- GENE simulations
- ▶ maybe some instability due to some paths with $\omega_{*e}\overline{\omega_{de}} > 0$
- consider ion-driven instabilities with frequencies $\omega \simeq \omega_{\it bi}$