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Model for ITG instabilities (from Pueschel et al., 2010)

Test problem for GENE, simplified gyrokinetic equations:

1D slab, (z, v‖)

B = Bz homogeneous and static
electrostatic: E = −∇Φ

adiabatic electrons
drift-kinetic ions
quasineutral

uniform density and temperature gradients in background
perturbation about Maxwellian F0(v‖) = π−1/2 exp(−v2‖)
nonlinearity dropped

May also derive directly from Vlasov equation and quasineutrality.

Electrostatic limit of Belli & Hammett (2005) model

Joseph Parker (University of Oxford) Velocity space using Hermite expansions 23rd March 2012 2 / 34



Model for ITG instabilities (from Pueschel et al., 2010)

Linearized kinetic equation
∂F1

∂t
+ αiv‖

∂F1

∂z
+

[
ωn + ωTi

(
v2‖ −

1

2

)]
ikyΦF0 + τeαiv‖

∂Φ

∂z
F0 = 0

Quasineutrality

Φ =

∫ ∞
−∞

F1 dv‖.

Parameters
ωn = 1, normalized density gradient
ωTi = 10, normalized ion temperature gradient
ky = 0.3, perpendicular wavenumber
τe = 1, species temperature ratio (Ti = Te)
αi = 0.34 nondimensional constant: velocity and length scales
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Wave-like solutions

F1 = f(v‖) exp
(
i
(
k‖z − ωt

))
Leads to eigenvalue problem,

L0f = ωf

where L0f = αikv‖f +

[
ωn + ωTi

(
v2‖ −

1

2

)]
kyΦF0 + τeαikv‖ΦF0

L real =⇒ eigenvalues in complex conjugate pairs =⇒ no damping
So actually want to solve,

lim
ε→0

Lεf = ωf, for Lε = L0 + iεC

where C is collisions, e.g. Lénard–Bernstein or BGK.
Breaks symmetry, so decay rate may tend to nonzero limit as ε→ 0.
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Discretization
Keep exp(ik‖z) behaviour, represent v‖ on a uniform grid,

Φ =

N∑
i=1

∆vf(vi)

Obtain linear ODE system

∂f

∂t
= iMf, M real N ×N matrix

Matrix eigenvalue problem (quicker than running IVPs):

−iωf =
∂f

∂t
= iMf

Growth rate is γ = max=(ω), for ω ∈ spectrum(M).

Matrix M depends on:
All parameters, particularly parallel wavenumber.
Discretization and resolution of grid in v‖.
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Growth rate for simple discretized system

N = 10

N = 100

dispersion relation

Capture growth, but convergence slow with N .
No decay.

I ε→ 0 at fixed N resolution.
I Need to restore collisions.
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Fine scales develop as =(ω)→ 0.
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Hermite expansion in velocity space
Use expansion in asymmetric Hermite functions,

f(v) =

∞∑
m=0

amφm(v), φm(v) =
Hm(v)√

2mm!
, φm(v) = F0(v)φm(v)

Bi-orthogonal polynomials with Maxwellian as weight function∫ ∞
−∞

φmφ
n dv = δmn

Recurrence relation

vφm =

√
m+ 1

2
φm+1 +

√
m

2
φm−1

=⇒ particle streaming becomes mode coupling
Represent velocity space scales,

Hm(v) ∝ cos
(
v
√

2m− mπ

2

)
, as m→∞

large m =⇒ fine scales
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Relative Entropy and Free Energy
Relative entropy is

R[F |F0] ≡
∫ ∞
−∞

F log

(
F

F0

)
− F + F0 dv

=

∫ ∞
−∞

F logF dv + 2U + function(density)

Expansion F = F0 + εF1 gives (at leading order)

R[F |F0] =
ε2

2

∫ ∞
−∞

F 2
1

F0
dv =

ε2

2

∞∑
m=0

a2m +O(ε3)

Define free energy of each Hermite mode, Em,

E =
∞∑
m=0

Em, with Em =
1

2
|am|2

cf. energy spectra in Fourier space for Navier–Stokes turbulence.
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Moment system

Replace F0 ≡ φ0 and v with Hermite functions

∂F1

∂t
+ iαikvF1 + ikyΦ

[
ωnφ0 +

ωTi√
2
φ2

]
+ i

kτeαiΦ√
2

φ1 = 0

Put F1 = amφm (implicit sum over repeated m)

∂am
∂t

φm + iαikvamφm + ikyΦ

[
ωnφ0 +

ωTi√
2
φ2

]
+ i

kτeαiΦ√
2

φ1 = 0

Use recurrence relation on particle streaming

∂am
∂t

φm + iαikam

(√
m+ 1

2
φm+1 +

√
m

2
φm−1

)
+ . . . = 0

Gives infinite set of coupled algebraic equations for {an}.
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System of equations for expansion coefficients

ωam =

(√
m+ 1

2
am+1 +

√
m

2
am−1

)

+
ky
αik‖

[
ωna0δm0 +

ωTia0√
2
δm2

]
︸ ︷︷ ︸

driving

+
τea0√

2
δm1︸ ︷︷ ︸

Boltzmann response

We have also used φ0 ≡ 1, so that,

Φ =

∫ ∞
−∞

F1φ
0 dv =

∞∑
m=0

∫ ∞
−∞

amφmφ
0 dv = a0
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Matrix equation



ωnky
αik‖

1√
2

τe√
2

+ 1√
2

1
kyωTi√
2αik‖

1
√

3
2√

3
2

√
2

√
2

. . .
. . .

√
N
2√

N
2

. . .
. . .



a = ωa
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Simple Truncation



ωnky
αik‖

1√
2

τe√
2

+ 1√
2

1
kyωTi√
2αik‖

1
√

3
2√

3
2

√
2√

2


a = ωa

Assume aN+1 = 0 at point of truncation. Last row of matrix:

���
���

�
√
N + 1

2
aN+1 +

√
N

2
aN−1 = ωaN

Equivalent to discretization on Gauss–Hermite points {vj}
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Hermite spectra of eigenfunctions

k = 2, γ > 0

k = 6, γ = 0

Growing mode: am decay as m increases =⇒ aN+1 ≈ 0 is okay
(Not) decaying mode not resolved
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Collisions
Free energy should cascade to large m (fine scales in v).
Free energy has nowhere to go when aN+1 = 0.
Restore collisions:

∂F1

∂t
+

[
ωn + ωTi

(
v2‖ −

1

2

)]
ikyΦF0 + iαikv‖F1 + iτeαikv‖ΦF0 = C[F1]

Desirable properties for C[F1]

conserves mass, momentum and energy

I

∫
C[F1] dv =

∫
vC[F1] dv =

∫
v2C[F1] dv = 0

satisfies a linearized H theorem:

dR
dt

= ε2
∫ ∞
−∞

F1C[F1]

F0
dv 6 0

represents small-angle collisions (contains v-derivatives)
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Lénard–Bernstein (1958) collisions
Simple member of linearized Landau/Fokker–Planck class:

C [F1] = ν
∂

∂v

[
vF1 +

1

2

∂F1

∂v

]
collision frequency ν
Hermite functions are eigenfunctions:

C [amφm] = −νmamφm

=⇒ easy to implement in Hermite space
Conserves mass, but not momentum or energy
Satisfies a linearized R theorem:

dR
dt

= −ε2ν
∑
m

m|am|2 6 0
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Lénard–Bernstein in Hermite space



ωnky
αik‖

1√
2

τe√
2

+ 1√
2
−iν 1

kyωTi√
2αik‖

1 −2iν
√

3
2√

3
2 −3iν

. . .
. . .

√
N
2√

N
2 −iNν


a = ωa

matrix now complex
roots not in complex-conjugate pairs =⇒ can find negative

growth rates
(we can manually conserve momentum and energy)
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Lénard–Bernstein in Hermite space



ωnky
αik‖

1√
2

τe√
2

+ 1√
2 ��

�H
HH−iν 1

kyωTi√
2αik‖

1 ���XXX−2iν
√

3
2√

3
2 −3iν

. . .
. . .

√
N
2√

N
2 −iNν


a = ωa

matrix now complex
roots not in complex-conjugate pairs =⇒ can find negative

growth rates
(we can manually conserve momentum and energy)
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Growth rate, Lenard–Berstein collisions, N = 100

ν = 10−1

ν = 10−2

ν = 10−3

dispersion relation

If collision frequency ν large enough to get k‖ > 4 correct,
then shape for k‖ < 4 distorted.
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Growth rate, Lenard–Berstein collisions, ν = 10−2

N = 100

N = 200

N = 300

dispersion relation

resolves dissipative scales
expensive: 300 modes
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Lenard–Bernstein collisions, ν = 10−2

k = 2

k = 6

Appreciable damping along whole spectrum.
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Hypercollisions
Would prefer:

low modes undamped high modes strongly damped
. . . whatever the truncation point N

Iterate Lénard–Bernstein collisions:

L[F1] =
∂

∂v

(
vF1 +

1

2

∂F1

∂v

)
, C[F1] = −ν(−N)−nLn[F1]

(like hyperdiffusion: −(−∇2)n in physical space)

Hermite functions are still eigenfunctions:

C [amφm] = −ν
(m
N

)n
amφm

ν sets the decay rate of the highest mode

linearized R-theorem:
dR
dt

= −ε2ν
∞∑
m=0

(m
N

)n
|am|2 6 0

n = 1 corresponds to Lénard–Bernstein collisions.
two parameters: n ≈ 6, ν ≈ 10 (robust to variation)
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Growth rate with hypercollisions, ν = 10, n = 6

simple truncation, N = 100

hypercollisions, N = 10

exact dispersion relation

Captures decaying parts of spectrum.
Excellent fit, fast convergence.
Appropriate for nonlinear problems.
Two parameters, n, ν, robust to variation.
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Hermite spectra with hypercollisions, k = 2

N = 10

N = 100

Low moments largely undamped
Damping at high m, for any N .
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Hermite spectra with hypercollisions, k = 6

N = 10

N = 100

Low moments largely undamped
Damping at high m, for any N .
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Energy equations and theoretical spectra
Equation for coefficients, valid for m > 3,

ωam =

(√
m+ 1

2
am+1 +

√
m

2
am−1

)
+ driving + Boltzmann response

Treat as a finite difference approximation in continuous m.
Energy equation for Em = |am|2/2 (Zocco & Schekochihin, 2011)

∂Em
∂t

+
∂

∂m

(√
2mEm

)
= −2ν

(m
N

)n
Em.

For a mode with growth rate γ,

Em =
C√
2m

exp

(
− γ

|γ|

(
m

mγ

)1/2

−
(
m

mc

)n+1/2
)
,

with the cutoffs,

mγ =
1

8γ2
, m(n+1/2)

c =

[
Nn (n+ 1/2)

ν
√

2

]
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Energy equations and theoretical spectra
Equation for coefficients, valid for m > 3,

ωam =

(√
m+ 1

2
am+1 +

√
m

2
am−1

)
+ hypercollisions

Treat as a finite difference approximation in continuous m.
Energy equation for Em = |am|2/2 (Zocco & Schekochihin, 2011)

∂Em
∂t

+
∂

∂m

(√
2mEm

)
= −2ν

(m
N

)n
Em.

For a mode with growth rate γ,

Em =
C√
2m

exp

(
− γ

|γ|

(
m

mγ

)1/2

−
(
m

mc

)n+1/2
)
,

with the cutoffs,

mγ =
1

8γ2
, m(n+1/2)

c =

[
Nn (n+ 1/2)

ν
√

2

]
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C√
2m

exp

(
− γ

|γ|

(
m

mγ

)1/2

−
(
m

mc

)n+1/2
)

Joseph Parker (University of Oxford) Velocity space using Hermite expansions 23rd March 2012 27 / 34



100 101 102

Hermite mode, m + 1

10−5

10−4

10−3

10−2

10−1

fr
ee

en
er

gy
,
E
m

m−1/2

growth rate dominated

collision
dominated

Decaying mode, k = 6

theoretical spectrum

numerical spectrum

growth rate cutoff

collisional cutoff

Em =
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exp
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−
(
m

mc
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How strong should collisions be?

We can find the collision strength required for a given resolution.
Write hypercollisions as,

C[F1] = −ν(−L)n[F1]

(i.e. remove N−n, damping strength expressed just by ν.)
Need to resolve collisional cutoff,

N > mc =

(
(n+ 1/2)

ν
√

2

)1/(n+1/2)

→∞ as ν → 0

Need infinite resolution to resolve collisionless case.
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Hermite spectra with different ν, k = 6, n =4, N =100

ν = 0.8× 10−7

ν = 1.0× 10−7

ν = 1.2× 10−7

Weaker collisions =⇒ finer scales in spectra
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Growth rate against collision strength, k = 6, n =4

N = 20

N = 50
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correct γ

a range of ν give the correct growth rate
range extends to smaller ν as N increases
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Hypercollisions on other grids

Easiest to implement in
Hermite space:

C[am] = −ν(m/N)nam

C[a] = Da

But may be used on any grid.
Map function values f to
Hermite space by a = M f ,
collide and map back,

C[f ] = M−1DM f

Only need to calculate
M−1DM once.
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Growth rate calculated on uniform grid, N = 16

simple truncation

hypercollisions

exact dispersion relation

Example: hypercollisions
implemented on a uniform grid.
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Summary
1D model for ITG instability

I velocity space discretization =⇒ eigenvalue problem
I finite composition of normal modes =⇒ no Landau damping

Hermite representation
I in decaying modes, have energy pile-up at small scales

Damping with collisions
I Lénard–Bernstein collisions

F finds damping, but requires O(100) terms
I hypercollisions

F excellent agreement with dispersion relation
F theoretical expression for eigenfunctions
F only ∼ 10 terms
F robust parameters
F easy to implement in Hermite space
F can use on any grid

“Vanishing collisions” is different from “collisionless”.
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Drift approximation in the Vlasov equation

E⊥ +
v ×B

c
= 0, v = v‖ẑ−

c

B2
∇Φ×B, B = Bẑ, E = −∇Φ.

Vlasov equation becomes

∂f

∂t
+
(
v‖ẑ−

c

B2
∇Φ×B

)
· ∇f − q

m

∂Φ

∂z

∂f

∂v‖
= 0.

Perturb about stationary equilibrium, f(x,v, t) = F0(x,v) + εF1(x,v, t)
Impose density and temperature gradients in x,

∂F0

∂x
= − 1

L

[
ωn + ωTi

(
v2‖ + v2⊥

v2th
− 3

2

)]
F0

Assume a Fourier mode in y: ∂y 7→ iky.
Integrate out perpendicular directions in v.

∂F1

∂t
+

[
ωn + ωTi

(
v2‖ −

1

2

)]
ikyΦF0 + αiv‖

∂F1

∂z
+ τeαiv‖

∂Φ

∂z
F0 = 0
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Quasineutrality
Poisson’s equation

∇2Φ = 4πq(ni − ne),
Boltzmann electrons

ne = n̄e exp

(
qΦ

Te

)
Nondimensionalize (with ε = ρs/L)

εTe
4πn̄iq2ρsL2

∇2Φ =

(
1 + ε

∫ ∞
−∞

F1 dv
)
− n̄e
n̄i

exp (εΦ) .

ε2∇2
⊥Φ =

(
1− n̄e

n̄i

)
+ ε

(∫ ∞
−∞

F1 dv − n̄e
n̄i

Φ

)
+O(ε2).

Φ, potential for electrostatic perturbation

Φ =

∫ ∞
−∞

F1 dv‖.
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