Accurate representation of velocity space using truncated Hermite expansions.

Joseph Parker

Oxford Centre for Collaborative Applied Mathematics
Mathematical Institute, University of Oxford

Wolfgang Pauli Institute, Vienna
23rd March 2012
Test problem for GENE, simplified gyrokinetic equations:

- 1D slab, \((z, v_\parallel)\)
- \(B = B_z\) homogeneous and static
- Electrostatic: \(E = -\nabla \Phi\)
-Uniform density and temperature gradients in background
- Perturbation about Maxwellian \(F_0(v_\parallel) = \pi^{-1/2} \exp(-v_\parallel^2)\)
- Nonlinearity dropped

May also derive directly from Vlasov equation and quasineutrality.

Electrostatic limit of Belli & Hammett (2005) model
Model for ITG instabilities (from Pueschel et al., 2010)

Linearized kinetic equation

$$\frac{\partial F_1}{\partial t} + \alpha_i v_\parallel \frac{\partial F_1}{\partial z} + \left[\omega_n + \omega_{Ti} \left(v_\parallel^2 - \frac{1}{2} \right) \right] i k_y \Phi F_0 + \tau_e \alpha_i v_\parallel \frac{\partial \Phi}{\partial z} F_0 = 0$$

Quasineutrality

$$\Phi = \int_{-\infty}^{\infty} F_1 \, dv_\parallel.$$

Parameters

- $\omega_n = 1$, normalized density gradient
- $\omega_{Ti} = 10$, normalized ion temperature gradient
- $k_y = 0.3$, perpendicular wavenumber
- $\tau_e = 1$, species temperature ratio ($T_i = T_e$)
- $\alpha_i = 0.34$, nondimensional constant: velocity and length scales
Wave-like solutions

\[F_1 = f(v_{\parallel}) \exp(i (k_{\parallel} z - \omega t)) \]

Leads to eigenvalue problem,

\[L_0 f = \omega f \]

where

\[L_0 f = \alpha_i k v_{\parallel} f + \left[\omega_n + \omega_{T_i} \left(v_{\parallel}^2 - \frac{1}{2} \right) \right] k_y \Phi F_0 + \tau_e \alpha_i k v_{\parallel} \Phi F_0 \]

\(L \) real \(\implies \) eigenvalues in complex conjugate pairs \(\implies \) no damping

So actually want to solve,

\[
\lim_{\epsilon \to 0} L_{\epsilon} f = \omega f, \quad \text{for} \quad L_{\epsilon} = L_0 + i \epsilon C
\]

where \(C \) is collisions, e.g. Lénard–Bernstein or BGK.

Breaks symmetry, so decay rate may tend to nonzero limit as \(\epsilon \to 0 \).
Dispersion relation

parallel wavenumber, k_{\parallel}

growth rate, γ

Dispersion relation

Joseph Parker (University of Oxford)

Velocity space using Hermite expansions

23rd March 2012 5 / 34
Discretization

- Keep \(\exp(ik_z) \) behaviour, represent \(v_{||} \) on a uniform grid,

\[
\Phi = \sum_{i=1}^{N} \Delta v f(v_i)
\]

- Obtain linear ODE system

\[
\frac{\partial f}{\partial t} = iMf, \quad M \text{ real } N \times N \text{ matrix}
\]

- **Matrix eigenvalue problem** (quicker than running IVPs):

\[
-i\omega f = \frac{\partial f}{\partial t} = iMf
\]

Growth rate is \(\gamma = \max \mathfrak{R}(\omega) \), for \(\omega \in \text{spectrum}(M) \).

Matrix \(M \) depends on:

- All parameters, particularly **parallel wavenumber**.
- **Discretization** and **resolution** of grid in \(v_{||} \).
• Capture growth, but convergence slow with N.
• No decay.
 ▶ $\epsilon \to 0$ at fixed N resolution.
 ▶ Need to restore collisions.
Distribution function in velocity space

Fine scales develop as $\mathcal{F}(\omega) \to 0$.
Hermite expansion in velocity space

Use expansion in asymmetric Hermite functions,

\[f(v) = \sum_{m=0}^{\infty} a_m \phi_m(v), \quad \phi^m(v) = \frac{H_m(v)}{\sqrt{2^m m!}}, \quad \phi_m(v) = F_0(v)\phi^m(v) \]

- Bi-orthogonal polynomials with Maxwellian as weight function

\[\int_{-\infty}^{\infty} \phi_m \phi^n \, dv = \delta_{mn} \]

- Recurrence relation

\[v\phi_m = \sqrt{\frac{m+1}{2}} \phi_{m+1} + \sqrt{\frac{m}{2}} \phi_{m-1} \]

\[\implies \text{particle streaming becomes mode coupling} \]

- Represent velocity space scales,

\[H_m(v) \propto \cos \left(v\sqrt{2m} - \frac{m\pi}{2} \right), \quad \text{as} \quad m \to \infty \]

large \(m \) \implies \text{fine scales}
Relative Entropy and Free Energy

Relative entropy is

\[R[F|F_0] \equiv \int_{-\infty}^{\infty} F \log \left(\frac{F}{F_0} \right) - F + F_0 \, dv \]

\[= \int_{-\infty}^{\infty} F \log F \, dv + 2U + \text{function}(\text{density}) \]

Expansion \(F = F_0 + \epsilon F_1 \) gives (at leading order)

\[R[F|F_0] = \frac{\epsilon^2}{2} \int_{-\infty}^{\infty} \frac{F_1^2}{F_0} \, dv = \frac{\epsilon^2}{2} \sum_{m=0}^{\infty} a_m^2 + O(\epsilon^3) \]

Define free energy of each Hermite mode, \(E_m \),

\[E = \sum_{m=0}^{\infty} E_m, \quad \text{with} \quad E_m = \frac{1}{2} |a_m|^2 \]

cf. energy spectra in Fourier space for Navier–Stokes turbulence.
Moment system

Replace $F_0 \equiv \phi_0$ and ν with Hermite functions

$$\frac{\partial F_1}{\partial t} + i\alpha_k \nu F_1 + ik_y \Phi \left[\omega_n \phi_0 + \frac{\omega_T}{\sqrt{2}} \phi_2 \right] + i \frac{k\tau_e \alpha_i \Phi}{\sqrt{2}} \phi_1 = 0$$

Put $F_1 = a_m \phi_m$ (implicit sum over repeated m)

$$\frac{\partial a_m}{\partial t} \phi_m + i\alpha_k \nu a_m \phi_m + ik_y \Phi \left[\omega_n \phi_0 + \frac{\omega_T}{\sqrt{2}} \phi_2 \right] + i \frac{k\tau_e \alpha_i \Phi}{\sqrt{2}} \phi_1 = 0$$

Use recurrence relation on particle streaming

$$\frac{\partial a_m}{\partial t} \phi_m + i\alpha_k \nu a_m \left(\sqrt{\frac{m+1}{2}} \phi_{m+1} + \sqrt{\frac{m}{2}} \phi_{m-1} \right) + \ldots = 0$$

Gives infinite set of coupled algebraic equations for $\{a_n\}$.
System of equations for expansion coefficients

\[\omega a_m = \left(\sqrt{m + 1} a_{m+1} + \sqrt{m} a_{m-1} \right) \]

\[+ \frac{k_y}{\alpha_i k_{||}} \left[\omega n a_0 \delta_{m0} + \frac{\omega T_i a_0}{\sqrt{2}} \delta_{m2} \right] \]

\[+ \frac{\tau_e a_0}{\sqrt{2}} \delta_{m1} \]

We have also used \(\phi^0 \equiv 1 \), so that,

\[\Phi = \int_{-\infty}^{\infty} F_1 \phi^0 \, dv = \sum_{m=0}^{\infty} \int_{-\infty}^{\infty} a_m \phi_m \phi^0 \, dv = a_0 \]
Matrix equation

\[
\begin{pmatrix}
\frac{\omega_n k_y}{\alpha_i k_{\|}} & \frac{1}{\sqrt{2}} & 1 \\
\frac{\tau_e}{\sqrt{2}} + \frac{1}{\sqrt{2}} & 1 & \sqrt{\frac{3}{2}} \\
\frac{k_y \omega T_i}{\sqrt{2} \alpha_i k_{\|}} & \sqrt{\frac{3}{2}} & \sqrt{2}
\end{pmatrix}
\]

\[a = \omega a\]
Simple Truncation

\[
\begin{pmatrix}
\frac{\omega_n k_y}{\alpha_i k_{||}} & \frac{1}{\sqrt{2}} & 1 \\
\frac{\tau_e}{\sqrt{2}} + \frac{1}{\sqrt{2}} & 1 & \sqrt{\frac{3}{2}} \\
\frac{k_y \omega_{T_i}}{\sqrt{2} \alpha_i k_{||}} & \sqrt{\frac{3}{2}} & \sqrt{2}
\end{pmatrix}
\]

\[a = \omega a\]

- Assume \(a_{N+1} = 0\) at point of truncation. Last row of matrix:

\[
\sqrt{\frac{N+1}{2}} a_{N+1} + \sqrt{\frac{N}{2}} a_{N-1} = \omega a_N
\]

- Equivalent to discretization on Gauss–Hermite points \(\{v_j\}\)
Growing mode: a_m decay as m increases $\Rightarrow a_{N+1} \approx 0$ is okay

(Not) decaying mode not resolved
Collisions

- Free energy should cascade to large m (fine scales in v).
- Free energy has nowhere to go when $a_{N+1} = 0$.
- Restore collisions:

$$\frac{\partial F_1}{\partial t} + \left[\omega_n + \omega_{Ti} \left(v_2^2 - \frac{1}{2}\right) \right] ik_y \Phi F_0 + i\alpha_i k v \parallel F_1 + i\tau e \alpha_i k v \parallel \Phi F_0 = C[F_1]$$

Desirable properties for $C[F_1]$

- conserves mass, momentum and energy
 $$\int C[F_1] \, dv = \int vC[F_1] \, dv = \int v^2 C[F_1] \, dv = 0$$
- satisfies a linearized H theorem:
 $$\frac{dR}{dt} = \epsilon^2 \int_{-\infty}^{\infty} \frac{F_1 C[F_1]}{F_0} \, dv \leq 0$$
- represents small-angle collisions (contains v-derivatives)
Lénard–Bernstein (1958) collisions

Simple member of linearized Landau/Fokker–Planck class:

\[C[F_1] = \nu \frac{\partial}{\partial v} \left[vF_1 + \frac{1}{2} \frac{\partial F_1}{\partial v} \right] \]

- collision frequency \(\nu \)
- Hermite functions are eigenfunctions:

\[C[a_m \phi_m] = -\nu m a_m \phi_m \]

⇒ easy to implement in Hermite space

- Conserves mass, but not momentum or energy
- Satisfies a linearized \(R \) theorem:

\[\frac{dR}{dt} = -\epsilon^2 \nu \sum_m m|a_m|^2 \leq 0 \]
Lénard–Bernstein in Hermite space

\[
\begin{pmatrix}
\frac{\omega_n k_y}{\alpha_i k} & \frac{1}{\sqrt{2}} & 1 \\
\frac{T_e}{\sqrt{2}} + \frac{1}{\sqrt{2}} & -i\nu & 1 \\
\frac{k_y \omega_{T_i}}{\sqrt{2} \alpha_i k} & 1 & -2i\nu & \sqrt{3} \\
& \sqrt{3} & -3i\nu & \cdots
\end{pmatrix}
\]

\[a = \omega a\]

- matrix now complex
- roots not in complex-conjugate pairs \(\Rightarrow\) can find negative growth rates
- (we can manually conserve momentum and energy)
Lénard–Bernstein in Hermite space

\[
\begin{pmatrix}
\frac{\omega_n k_y}{\alpha_i k_i} & \frac{1}{\sqrt{2}} & 1 \\
\frac{\tau_e}{\sqrt{2}} + \frac{1}{\sqrt{2}} & \sqrt{2} & \sqrt{3} \\
\frac{k_y \omega T_i}{\sqrt{2} \alpha_i k_i} & -2i\nu & \sqrt{3} \\
\sqrt{3} & -3i\nu & \ddots \\
\sqrt{3} & \ddots & \ddots \\
1 & \sqrt{N} & -iN\nu \\
0 & \sqrt{N/2} & -iN\nu
\end{pmatrix}
\]

\[\mathbf{a} = \omega \mathbf{a}\]

- matrix now complex
- roots *not* in complex-conjugate pairs \(\Rightarrow\) can find negative growth rates
- (we can manually conserve momentum and energy)
If collision frequency ν large enough to get $k_{\parallel} > 4$ correct, then shape for $k_{\parallel} < 4$ distorted.
• resolves dissipative scales
• expensive: 300 modes
Appreciable damping along whole spectrum.
Hypercollisions

Would prefer:
- low modes undamped
- high modes strongly damped

... whatever the truncation point N

Iterate Lénard–Bernstein collisions:

$$\mathcal{L}[F_1] = \frac{\partial}{\partial v} \left(v F_1 + \frac{1}{2} \frac{\partial F_1}{\partial v} \right), \quad C[F_1] = -\nu (-N)^{-n} \mathcal{L}^n[F_1]$$

(like hyperdiffusion: $-(-\nabla^2)^n$ in physical space)

Hermite functions are still eigenfunctions:

$$C [a_m \phi_m] = -\nu \left(\frac{m}{N} \right)^n a_m \phi_m$$

- ν sets the decay rate of the highest mode
- linearized R-theorem: $\frac{dR}{dt} = -\epsilon^2 \nu \sum_{m=0}^{\infty} \left(\frac{m}{N} \right)^n |a_m|^2 \leq 0$
- $n = 1$ corresponds to Lénard–Bernstein collisions.
- two parameters: $n \approx 6$, $\nu \approx 10$ (robust to variation)
Captures decaying parts of spectrum.
Excellent fit, fast convergence.
Appropriate for nonlinear problems.
Two parameters, n, ν, robust to variation.
Hermite mode, $m+1$

- Low moments largely undamped
- Damping at high m, for any N.
Low moments largely undamped

Damping at high m, for any N.
Energy equations and theoretical spectra

Equation for coefficients, valid for \(m \geq 3 \),

\[
\omega a_m = \left(\sqrt{\frac{m+1}{2}} a_{m+1} + \sqrt{\frac{m}{2}} a_{m-1} \right) + \text{driving + Boltzmann response}
\]

Treat as a finite difference approximation in continuous \(m \).

Energy equation for \(E_m = |a_m|^2/2 \) \(\quad \text{(Zocco & Schekochihin, 2011)} \)

\[
\frac{\partial E_m}{\partial t} + \frac{\partial}{\partial m} \left(\sqrt{2mE_m} \right) = -2\nu \left(\frac{m}{N} \right)^n E_m.
\]

For a mode with growth rate \(\gamma \),

\[
E_m = \frac{C}{\sqrt{2m}} \exp \left(-\frac{\gamma}{|\gamma|} \left(\frac{m}{m_\gamma} \right)^{1/2} - \left(\frac{m}{m_c} \right)^{n+1/2} \right),
\]

with the cutoffs,

\[
m_\gamma = \frac{1}{8\gamma^2}, \quad m_c^{(n+1/2)} = \left[\frac{N^n (n + 1/2)}{\nu \sqrt{2}} \right]
\]
Energy equations and theoretical spectra

Equation for coefficients, valid for $m \geq 3$,

$$\omega a_m = \left(\sqrt{\frac{m+1}{2}} a_{m+1} + \sqrt{\frac{m}{2}} a_{m-1} \right) + \text{hypercollisions}$$

Treat as a finite difference approximation in continuous m.

Energy equation for $E_m = |a_m|^2 / 2$ (Zocco & Schekochihin, 2011)

$$\frac{\partial E_m}{\partial t} + \frac{\partial}{\partial m} \left(\sqrt{2mE_m} \right) = -2\nu \left(\frac{m}{N} \right)^n E_m.$$

For a mode with growth rate γ,

$$E_m = \frac{C}{\sqrt{2m}} \exp \left(-\frac{\gamma}{|\gamma|} \left(\frac{m}{m_\gamma} \right)^{1/2} - \left(\frac{m}{m_c} \right)^{n+1/2} \right),$$

with the cutoffs,

$$m_\gamma = \frac{1}{8\gamma^2}, \quad m_c^{(n+1/2)} = \left[\frac{N^n (n + 1/2)}{\nu \sqrt{2}} \right].$$
Growing mode, $k = 2$

\[
E_m = \frac{C}{\sqrt{2m}} \exp \left(-\frac{\gamma}{|\gamma|} \left(\frac{m}{m_\gamma} \right)^{1/2} - \left(\frac{m}{m_c} \right)^{n+1/2} \right)
\]
Decaying mode, $k = 6$

\[
E_m = \frac{C}{\sqrt{2m}} \exp \left(-\frac{\gamma}{|\gamma|} \left(\frac{m}{m_\gamma} \right)^{1/2} - \left(\frac{m}{m_c} \right)^{n+1/2} \right)
\]
How strong should collisions be?

- We can find the collision strength required for a given resolution.
- Write hypercollisions as,

\[C[F_1] = -\nu(-\mathcal{L})^n[F_1] \]

(i.e. remove \(N^{-n} \), damping strength expressed just by \(\nu \).)

- Need to resolve collisional cutoff,

\[N > m_c = \left(\frac{n + 1/2}{\nu \sqrt{2}} \right)^{1/(n+1/2)} \rightarrow \infty \quad \text{as} \quad \nu \rightarrow 0 \]

- Need infinite resolution to resolve collisionless case.
Weaker collisions \implies finer scales in spectra
a range of ν give the correct growth rate
range extends to smaller ν as N increases
Hypercollisions on other grids

- Easiest to implement in Hermite space:
 \[
 C[a_m] = -\nu (m/N)^n a_m \\
 C[a] = Da
 \]

- But may be used on any grid.

- Map function values \(f \) to Hermite space by \(a = Mf \), collide and map back,
 \[
 C[f] = M^{-1}DMf
 \]

- Only need to calculate \(M^{-1}DM \) once.

Example: hypercollisions implemented on a uniform grid.
Summary

- **1D model for ITG instability**
 - velocity space discretization \Rightarrow eigenvalue problem
 - finite composition of normal modes \Rightarrow no Landau damping
- **Hermite representation**
 - in decaying modes, have energy pile-up at small scales
- **Damping with collisions**
 - Lénard–Bernstein collisions
 - finds damping, but requires $O(100)$ terms
 - **hypercollisions**
 - excellent agreement with dispersion relation
 - theoretical expression for eigenfunctions
 - only ~ 10 terms
 - robust parameters
 - easy to implement in Hermite space
 - can use on any grid

- “Vanishing collisions” is different from “collisionless”.

Joseph Parker (University of Oxford)
References

Supported by Award No KUK-C1-013-04 from King Abdullah University of Science and Technology (KAUST).
Drift approximation in the Vlasov equation

\[\mathbf{E}_\perp + \frac{\mathbf{v} \times \mathbf{B}}{c} = 0, \quad \mathbf{v} = v_\parallel \hat{\mathbf{z}} - \frac{c}{B^2} \nabla \Phi \times \mathbf{B}, \quad \mathbf{B} = B\hat{\mathbf{z}}, \quad \mathbf{E} = -\nabla \Phi. \]

Vlasov equation becomes

\[\frac{\partial f}{\partial t} + \left(v_\parallel \hat{\mathbf{z}} - \frac{c}{B^2} \nabla \Phi \times \mathbf{B} \right) \cdot \nabla f - \frac{q}{m} \frac{\partial \Phi}{\partial z} \frac{\partial f}{\partial v_\parallel} = 0. \]

Perturb about stationary equilibrium, \(f(x, v, t) = F_0(x, v) + \epsilon F_1(x, v, t) \)

Impose density and temperature gradients in \(x \),

\[\frac{\partial F_0}{\partial x} = -\frac{1}{L} \left[\omega_n + \omega_{Ti} \left(\frac{v_\parallel^2 + v_\perp^2}{v_{th}^2} - \frac{3}{2} \right) \right] F_0 \]

Assume a Fourier mode in \(y \): \(\partial_y \mapsto ik_y \).

Integrate out perpendicular directions in \(v \).

\[\frac{\partial F_1}{\partial t} + \left[\omega_n + \omega_{Ti} \left(v_\parallel^2 - \frac{1}{2} \right) \right] ik_y \Phi F_0 + \alpha_i v_\parallel \frac{\partial F_1}{\partial z} + \tau_e \alpha_i v_\parallel \frac{\partial \Phi}{\partial z} F_0 = 0 \]
Quasineutrality

Poisson's equation

\[\nabla^2 \Phi = 4\pi q (n_i - n_e), \]

Boltzmann electrons

\[n_e = \bar{n}_e \exp \left(\frac{q\Phi}{T_e} \right) \]

Nondimensionalize (with \(\epsilon = \rho_s / L \))

\[\frac{\epsilon T_e}{4\pi \bar{n}_i q^2 \rho_s L^2} \nabla^2 \Phi = \left(1 + \epsilon \int_{-\infty}^{\infty} F_1 \, dv \right) - \frac{\bar{n}_e}{\bar{n}_i} \exp (\epsilon \Phi). \]

\[\epsilon^2 \nabla^2_\perp \Phi = \left(1 - \frac{\bar{n}_e}{\bar{n}_i} \right) + \epsilon \left(\int_{-\infty}^{\infty} F_1 \, dv - \frac{\bar{n}_e}{\bar{n}_i} \Phi \right) + \mathcal{O}(\epsilon^2). \]

\(\Phi \), potential for electrostatic perturbation

\[\Phi = \int_{-\infty}^{\infty} F_1 \, dv_\parallel. \]