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Model for ITG instabilities (from Pueschel et al., 2010)

Test problem for GENE, simplified gyrokinetic equations:

@ 1D slab, (z,v)) @ adiabatic electrons
@ B = Bz homogeneous and static @ drift-kinetic ions
@ electrostatic: E = —V® @ quasineutral

@ uniform density and temperature gradients in background
@ perturbation about Maxwellian Fy(v) = 7~ /% exp(—uf)
@ nonlinearity dropped

May also derive directly from Vlasov equation and quasineutrality.

Electrostatic limit of Belli & Hammett (2005) model
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Model for ITG instabilities (from Pueschel et al., 2010)

Linearized kinetic equation

OF' OF' 1 ) P
8_251 + aiv”a—; + [wn + wry <v2| — 5)] 1ky®Fy + Teaiv”&FO =0
Quasineutrality
o0
b = / F1 d”l)”.
o )
Parameters
wp =1, normalized density gradient
wr, = 10, normalized ion temperature gradient
ky, = 0.3, perpendicular wavenumber
Te =1, species temperature ratio (7; = 1)
a; = 0.34 nondimensional constant: velocity and length scales
OCCAM €&
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Wave-like solutions
F1 = f(v)) exp (i (kyz — wt))
Leads to eigenvalue problem,

Lof =wf
1
where Lof = Oéi]ﬂ}”f + [wn + wr; (U2| — 2>:| k‘yq)Fo + Tea@'k’UH@FO

L real = eigenvalues in complex conjugate pairs — no damping
So actually want to solve,

limL.f=wf, for L.=Lg+ieC
e—0

where C'is collisions, e.g. Lénard—Bernstein or BGK.
Breaks symmetry, so decay rate may tend to nonzero limit as ¢ — 0.
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Dispersion relation
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Discretization
@ Keep exp(ik) z) behaviour, represent v on a uniform grid,

N
=) Avf(v)

i=1

@ Obtain linear ODE system

% =iMf, M real N x N matrix
@ Matrix eigenvalue problem (quicker than running IVPs):
. of .
— = —_— M
wf T iMf

Growth rate is v = max (w), for w € spectrum(M ).

Matrix M depends on:
@ All parameters, particularly parallel wavenumber.
o Discretization and resolution of grid in v;. S
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Growth rate for simple discretized system
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@ Capture growth, but convergence slow with N.

@ No decay.
e — 0 at fixed N resolution.
Need to restore collisions.
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Distribution function in velocity space

— k=275
0.12f 1

— k=325
0.10 — k=375]]

< oF

Fine scales develop as S (w) — 0.
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Hermite expansion in velocity space
Use expansion in asymmetric Hermite functions,

> m Hm(U) m
f(v) = n;)am¢m(v), ¢ (U) = \/QTTII!’ ¢m(v) = FO(U)¢ (U)

@ Bi-orthogonal polynomials with Maxwellian as weight function

/ ¢m¢n dv = dmn

@ Recurrence relation

m—+ 1 m
VP, = T¢m+1 14/ 5¢m—1

\ — particle streaming becomes mode coupling\
@ Represent velocity space scales,

Hp,(v) o cos (v\/2m - g) , as m — oo

‘ large m = fine scales‘ OCCAM €&
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Relative Entropy and Free Energy

Relative entropy is

*° F
R[F|Fy) E/ Flog (Fo) - F+ Fydv

—0o0
(e}

= / Flog Fdv + 2U + function(density)

—0o0

Expansion F' = Fj + e¢F; gives (at leading order)

F?
RIF|Fo] = & /Oo Lap="5 Za + O(e
Define free energy of each Hermite mode, E

(o)
. 1
E=) Epn,  with E,= 5|am|2

cf. energy spectra in Fourier space for Navier-Stokes turbuleRce. ™ ©
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Moment system

Replace Fj = ¢¢ and v with Hermite functions

0F
W + zazkal + Zk P [wn(Z)o + 7¢2]

Put F1 = a;, ¢y, (implicit sum over repeated m)

k‘TBOéZ(I)
V2

»1 =0

8am

kTequ;
Qbm + 1o kvag, ¢, + 'Lk o |:wn¢0 ¢2:| Tei® ——¢1=0

V2 V2

Use recurrence relation on particle streaming

Oam . m—+1 Im
Wd)m + Zaikam< T¢m+1 + 2¢m1> +...=0

Gives infinite set of coupled algebraic equations for {a,}.
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System of equations for expansion coefficients

B fm—+1 . m
Wam = 5 Am+1 9 Qm—1
k

wr; 4o TeQ(
e WnaoO0mo + ——0m2 e_5m1
aik) V2 2
~—
dri?/,ing Boltzmann response

We have also used ¢° = 1, so that,

P = / quﬁodv = Z / amqﬁmqﬁodv = ag
- m=0"Y ~®
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Matrix equation

wnky

Te 4 1
NI
kywr,

1
aiky V2
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Simple Truncation

wnky 1
aik| V2
et 1
5%:;’;“ 1 % a=uwa
5 V2
V2

@ Assume ay1 = 0 at point of truncation. Last row of matrix:

N+1 N
5 aN+1+ EGN—l = Wan

@ Equivalent to discretization on Gauss—Hermite points {v;}
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Hermite spectra of eigenfunctions

10°

10~10F

free energy, |a,,|?
-
(=]
|

10730 L
— k=2,v>0
— k=6,y=0
10745 100 102

Hermite mode, m + 1

@ Growing mode: a,, decay as m increases — ay1 ~ 0 is okay J

@ (Not) decaying mode not resolved

Joseph Parker (University of Oxford)
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Collisions

@ Free energy should cascade to large m (fine scales in v).
@ Free energy has nowhere to go when a4 = 0.
@ Restore collisions:

oF 1N\ |. . ,
87751 + |:Wn + wr, (Uﬁ - 2>:| Zky‘I)FQ + ZozikU”Fl + ZTEOzikv”(I)FO = C[Fl]
Desirable properties for C[F}]
@ conserves mass, momentum and energy
/C’[Fl]dv = /vC’[Fl]dv = /sz[Fl]dv =0
@ satisfies a linearized H theorem:

dR , [* FC[F]
v _ AV 4 <
dt 6/ F, SO

—0o0
@ represents small-angle collisions (contains v-derivatives)
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Lénard—Bernstein (1958) collisions

Simple member of linearized Landau/Fokker—Planck class:

0

C[Fl] = 1/%

10F
s

2 v
@ collision frequency v
@ Hermite functions are eigenfunctions:

C [am¢m] = _Vmam¢m

= easy to implement in Hermite space
@ Conserves mass, but not momentum or energy

@ Satisfies a linearized R theorem:
dR

i —62ygm|am|2 <0
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Lénard—Bernstein in Hermite space

Wnky 1
aik) V2
4 Ly 1
\/2 V2
,wai oy §
2ok, 1 2iv 5
3 ) a=wa
b — 3
N
2
N .
o —1Nv

@ matrix now complex
@ roots notin complex-conjugate pairs — can find negative
growth rates
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Lénard—Bernstein in Hermite space

Wnky 1
()zik)H \/i
Te 1 :
x/z—i_ V2 > 1
v 2
a—=wa
3 .
5 —3iv
N
2
N .
o —1Nv

@ matrix now complex
@ roots not in complex-conjugate pairs — can find negative
growth rates

@ (we can manually conserve momentum and energy) DcCAm a
- u
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Og}rowth rate, Lenard—Berstein collisions, N = 100

0.2
— 0.0
o
= 02
—
=
T 04
go — v=10"!
—0.6F
— v =102
—08H — v= 1073
--- dispersion relation
~105 1 ) 3 1 5 G 7 8
parallel wavenumber, k|
If collision frequency v large enough to get & > 4 correct,
then shape for & < 4 distorted.
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Og}rowth rate, Lena

N =100
N =200
N =300

dispersion relation

rd-Berstein collisions, v = 1072

1 2 3 4

5

6 7 8

parallel wavenumber, k|

@ resolves dissipative scales
@ expensive: 300 modes

J
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Lenard Bernstein collisions, v = 1072

10°
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free energy, |a,|?

1076

1077

-8
10 100

161
Hermite mode, m + 1
@ Appreciable damping along whole spectrum.

10?

)
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Hypercollisions
Would prefer:

@ low modes undamped @ high modes strongly damped

... Whatever the truncation point N
lterate Lénard—Bernstein collisions:

C[Fl] = —I/(—N)inﬁn[Fl]
(like hyperdiffusion: —(—V?)™ in physical space)
Hermite functions are still eigenfunctions:

Clamopm] = —v (%)” am®m

@ v sets the decay rate of the highest mode
dR

o0
. . . B 2 m\”™ 2
@ linearized R-theorem: it VmE—O <N> lam|® <0

@ n = 1 corresponds to Lénard—Bernstein collisions.
@ two parameters: n =~ 6, v =~ 10 (robust to variation) OCCAM &€
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Growth rate with hypercollisions, v = 10, n = 6

<
=)

growth rate, v
| |

|
<
=)

simple truncation, N = 100

—0.8}-{ —— hypercollisions, N = 10
—e— cxact dispersion relation
B S R S B S N SRR

parallel wavenumber, k

@ Captures decaying parts of spectrum.

@ Excellent fit, fast convergence.

@ Appropriate for nonlinear problems.

@ Two parameters, n, v, robust to variation.
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Hermite spectra with hypercollisions, k = 2

free energy, |a,|?/2

107°
107
ol |— N=10
— N =100
10750 101 102
Hermite mode, m + 1
@ Low moments largely undamped
@ Damping at high m, for any N.
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" Hermite spectra with hypercollisions, k = 6
107!
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10

107

107¢

1077
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Hermite mode, m + 1

@ Low moments largely undamped
@ Damping at high m, for any N. J
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Energy equations and theoretical spectra
Equation for coefficients, valid for m > 3,

m+1 m ..
Wy = 5 Gm+1 + 5 Gm-1 + driving + Boltzmann response

Treat as a finite difference approximation in continuous m.

Energy equation for E,,, = |a,,|?/2 (Zocco & Schekochihin, 2011)
o0FE,, 0 B m\n
ot (VERER) = =20 () o

For a mode with growth rate -,

1/2 n+1/2
B,= - (-2 (ﬁ) _ (ﬁ) ,
V2m ] \m, me
with the cutoffs,

" N" (n+1/2)
=g it = O
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Energy equations and theoretical spectra
Equation for coefficients, valid for m >

m + 1
Wy = i1 + —am 1 | + hypercollisions

Treat as a finite difference approximation in continuous m.

Energy equation for E,,, = |a,,|?/2 (Zocco & Schekochihin, 2011)

a{% + % (VamEn) = ~2v ()" En.

For a mode with growth rate -,

1/2 n+1/2
B,= - (-2 (ﬁ) _ (ﬁ) ,
V2m 1] My Me
with the cutoffs,

1 . N™(n+1/2)
=g e = [0
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Decaying mode, k = 6

growth rate dominated

collision

free energy, F,,
2

— theoretical spectrum

H
(==}
L
\
o
o

numerical spectrum
— growth rate cutoff

—  collisional cutoff

~dominated

—

_5 I I
10 10° 10

Hermite mode, m + 1

E, = — - [ — Y
"= Vam P\ T (m'y) me
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How strong should collisions be?

@ We can find the collision strength required for a given resolution.
@ Write hypercollisions as,

ClF] = —v(=£)"[F1]
(i.e. remove N~ ", damping strength expressed just by v.)

@ Need to resolve collisional cutoff,

1/(n+1/2)
(n+1/2)> —o00 as v—0

V2

@ Need infinite resolution to resolve collisionless case.

N>mc:<
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H(legomite spectra with different v, k =6, n =4, N =100
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0 20 {10 60 80 100
Hermite mode, m + 1
Weaker collisions — finer scales in spectra )
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Growth rate agalnst COHlSlOIl strength k= 6 n =4

— N =20
— N =50
—01 |—— N =100
- - - cotrect ¥
% —-0.2
—
=
E
g 03
—
o0
—0.4 : N
-0.5

01 107 1078 1077 1076 107° 1074 1073
hypercollision strength, v

@ arange of v give the correct growth rate
@ range extends to smaller v as N increases
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Hypercollisions on other grids

@ Easiest to implement in
Hermite space:

0.2

Clam] = —v(m/N)"ap, 00
Cla] = Da ;E B
@ But may be used on any grid. & 4

@ Map function values f to
Hermite space by a = MT, 10
collide and map back,

ylGrowth rate calculated on uniform grid, N = 16

o

N

simple truncation
hypercollisions

exact dispersion relation

1

P 3 1 [
parallel wavenumber, &

CIf] = M~ 'DMF Example: hypercollisions
implemented on a uniform grid.

@ Only need to calculate
M~'DM once.
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Summary

@ 1D model for ITG instability

velocity space discretization —- eigenvalue problem

finite composition of normal modes = no Landau damping
@ Hermite representation

in decaying modes, have energy pile-up at small scales
@ Damping with collisions

Lénard—Bernstein collisions

finds damping, but requires ©(100) terms
hypercollisions

excellent agreement with dispersion relation
theoretical expression for eigenfunctions
only ~ 10 terms

robust parameters

easy to implement in Hermite space

can use on any grid

@ “Vanishing collisions” is different from “collisionless”.
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Drift approximation in the Vlasov equation

v x B
EJ_+

=0, v=uz-;VexB, B=Bz E=-Vo.

Vlasov equation becomes
of . c
-~ — —VOxB) Vf-+———* =
ot + (UHZ B2v x ) v m 0z 81)”

Perturb about stationary equilibrium, f(x,v,t) = Fo(x,v) + eFi(x, v, t)
Impose density and temperature gradients in z,

2 2
Wn + wr, il tu —§
i 2
Vi 2

Assume a Fourier mode iny:  J, — ik,.
Integrate out perpendicular directions in v.

oy _ 1
oxr L

Fo

o 5 1 . o 0P
w I [Wn + wr, (U — 5):| Z/{yq)Fo + ozw”E + TeaiUHEFO =0 J
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Quasineutrality
Poisson’s equation

V2® = 4dmq(n; — ne),

_ <q¢>>
MNe = Ne €X E—
e =7eexp |

Nondimensionalize (with e = p/L)

Boltzmann electrons

e Grp- (14 /ooFd " oxp (€d)
——5 = € v — — €X € .
dmng?ps L o il

V3D = <1 - 77€> + e</ Fydv — 7Eeq)) + O(é%).
n; —00 g

®, potential for electrostatic perturbation

(I):/ Fld’l)”. J
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