Numerical schemes for a neoclassical pedestal

Matt Landreman

MIT Plasma Science & Fusion Center

Thanks to Darin Ernst, Peter Catto, Leslie Greengard, Felix Parra, Michael Barnes, Antoine Cerfon, Jeffrey Parker

DIT DSEC

Supported by U.S. D.o.E. & ORISE

Numerical schemes for a neoclassical pedestal

- Local neoclassical calculations with the full linearized Fokker-Planck collision operator
- Nonlocal (pedestal) neoclassical calculations
 - Formulation of the drift-kinetic equation
 - Operator splitting approach
 - Need for sources
- Questions for you

Local neoclassical calculations with the full linearized Fokker-Planck operator

Local drift-kinetic equation

$$\boldsymbol{\nu}_{\parallel} \mathbf{b} \cdot \nabla \theta \left(\frac{\partial f_1}{\partial \theta} \right)_{\boldsymbol{\mu}, \boldsymbol{\nu}, \boldsymbol{\psi}} + \mathbf{v}_d \cdot \nabla \boldsymbol{\psi} \frac{\partial f_M}{\partial \boldsymbol{\psi}} = C \left\{ f_1 \right\} \qquad \qquad f = f_M + f_1$$

Equivalent form better suited for numerical work:

$$a_{1}\frac{\partial f_{1}}{\partial \theta} + a_{2}\frac{\partial f_{1}}{\partial \xi} - \nu_{*} \left[a_{3}\frac{\partial}{\partial \xi}a_{4}\frac{\partial f_{1}}{\partial \xi} + \frac{1}{\nu^{2}}\frac{\partial}{\partial \nu}a_{5}\frac{\partial}{\partial \nu}\frac{f_{1}}{e^{-\nu^{2}}} + a_{6}f_{1} + a_{7}H + a_{8}\frac{\partial^{2}G}{\partial \nu^{2}} \right] = a_{9}$$
where $f_{1} = f_{1}(\theta, \nu, \xi), \qquad \xi = \nu_{\parallel}/\nu$

$$\nabla^{2}H = -4\pi f_{1}, \qquad \nabla^{2} = \frac{1}{\nu^{2}}\frac{\partial}{\partial \nu}\nu^{2}\frac{\partial}{\partial \nu} + \frac{1}{\nu^{2}}\frac{\partial}{\partial \xi}(1-\xi^{2})\frac{\partial}{\partial \xi},$$

$$\nabla^{2}G = 2H, \qquad a_{1}, ..., a_{9} \text{ are known.}$$

- These are 3 coupled linear 3D partial differential equations.
- Even as $\nu_* \rightarrow 0$, details of *C* matter.
- Pitch-angle scattering is expected to be a poor approximation for *C* in the pedestal.

Discretization scheme

boundary conditions:

• Regularity at v = 0

• Derivatives of H & G at v_{max}

Pitch-angle-scattering approximation is quantitatively poor for realistic ε

Nonlocal (pedestal) neoclassical calculations

In a pedestal, standard (local) neoclassical theory breaks down

Standard bootstrap current calculations are formally not valid in the pedestal.

Nonlocal drift-kinetic equation

• Suppose
$$f \approx f_M = n(\psi) \left[\frac{m}{2\pi T(\psi)} \right] \exp\left(-\frac{m\upsilon^2}{2T(\psi)}\right)$$
. Let $\eta(x) = n(x) \exp\left(\frac{e\Phi(x)}{T(x)}\right)$.

• Introduce
$$f_* = \eta(\psi_*) \left[\frac{m}{2\pi T(\psi_*)} \right] \exp\left(-\frac{W}{T(\psi_*)}\right)$$
 where $\psi_* = \psi - \frac{RB_{tor} \upsilon_{\parallel}}{\Omega}$,
 $W = \frac{m\upsilon^2}{2} + e\Phi$.

•
$$f_* \approx f_M - \frac{RB_{tor} \upsilon_{\parallel}}{\Omega} \frac{\partial f_M}{\partial \psi}$$
. Then $f \approx f_*$ if $1 \gg \left| \frac{f_* - f_M}{f_M} \right| = \max\left(\frac{\rho_{pol}}{r_T}, \frac{\rho_{pol}}{r_\eta}\right)$,
but r_n and r_{Φ} can still be $\sim \rho_{pol}$ if $n \approx \exp\left(-\frac{e\Phi}{T}\right)$.

- Notice $(\boldsymbol{\nu}_{\parallel} \mathbf{b} + \mathbf{v}_{d}) \cdot \nabla f_{*} = 0.$
- Kinetic equation: $(\upsilon_{\parallel} \mathbf{b} + \mathbf{v}_d) \cdot \nabla f = C\{f\} + S.$

 \Rightarrow C can be linearized about f_M if r_T and r_η are $\gg \rho_{pol}$.

• Introduce
$$g = f - f_*$$
. $\Rightarrow (\upsilon_{\parallel} \mathbf{b} + \mathbf{v}_d) \cdot \nabla g - C\{g\} = C\{f_*\} + S.$

Nonlocal drift-kinetic equation

$$\upsilon_{\parallel} \mathbf{b} + \mathbf{v}_{\mathbf{E} \times \mathbf{B}} \Big) \cdot \nabla \theta \frac{\partial g}{\partial \theta} + \left[-\upsilon B + \xi c R B_{tor} \frac{d\Phi}{d\psi} \right] \frac{\left(1 - \xi^2\right)}{2B^2} \nabla_{\parallel} B \frac{\partial g}{\partial \xi} \\
- \mathbf{v}_m \cdot \nabla \psi \frac{e}{m\upsilon} \frac{d\Phi}{d\psi} \frac{\partial g}{\partial \upsilon} + \mathbf{v}_m \cdot \nabla \psi \frac{\partial g}{\partial \psi} - C\left\{g\right\} = C\left\{f_*\right\} + S$$

Change variables from (μ, W) to (υ, ξ) Assume $B = B(\theta)$ and $RB_{tor} = \text{const so } \mathbf{v}_m \cdot \nabla \theta = 0$.

$$(\upsilon_{\parallel} \mathbf{b} + \mathbf{v}_{d}) \cdot \nabla g - C\{g\} = C\{f_{*}\} + S.$$

To calculate nonlocal transport, you must solve a 4D integro-differential equation

$$\begin{pmatrix} (\upsilon_{\parallel} \mathbf{b} + \mathbf{v}_{\mathbf{E} \times \mathbf{B}}) \cdot \nabla \theta \frac{\partial g}{\partial \theta} + \begin{bmatrix} -\upsilon B + \xi c R B_{tor} \frac{d\Phi}{d\psi} \end{bmatrix} \frac{(1 - \xi^2)}{2B^2} \nabla_{\parallel} B \frac{\partial g}{\partial \xi} \\ \mathcal{L}_{Loc} - \mathbf{v}_m \cdot \nabla \psi \frac{e}{m\upsilon} \frac{d\Phi}{d\psi} \frac{\partial g}{\partial \upsilon} + \mathbf{v}_m \cdot \nabla \psi \frac{\partial g}{\partial \psi} + C\{g\} = C\{f_*\} + S \\ \mathcal{L}_{NLoc} \end{pmatrix}$$

$$f = f_* + g, \qquad f_* = \eta\left(\psi_*\right) \left[\frac{m}{2\pi T\left(\psi_*\right)}\right]^{3/2} \exp\left(-\frac{m\upsilon^2}{2T\left(\psi_*\right)} - \frac{e\Phi}{T\left(\psi_*\right)}\right),$$

$$\psi_* = \psi - \frac{RB_{tor}\upsilon_{\parallel}}{\Omega}, \qquad g = g(\psi, \theta, \upsilon, \xi), \qquad \xi = \upsilon_{\parallel} / \upsilon$$

The nonlocal kinetic equation can be solved using operator splitting plus a *local* neoclassical code

$$\frac{\partial g}{\partial t} + \left(\upsilon_{\parallel} \mathbf{b} + \mathbf{v}_{\mathbf{E} \times \mathbf{B}}\right) \cdot \nabla \theta \frac{\partial g}{\partial \theta} + \left[-\upsilon B + \xi c R B_{tor} \frac{d\Phi}{d\psi}\right] \frac{\left(1 - \xi^{2}\right)}{2B^{2}} \nabla_{\parallel} B \frac{\partial g}{\partial \xi}$$

$$\int_{Loc} - \mathbf{v}_{m} \cdot \nabla \psi \frac{e}{m\upsilon} \frac{d\Phi}{d\psi} \frac{\partial g}{\partial \upsilon} + \mathbf{v}_{m} \cdot \nabla \psi \frac{\partial g}{\partial \psi} + C\{g\} = C\{f_{*}\} + S$$

$$\int_{NLoc} \int_{NLoc} \int$$

$$\frac{g^{t+(1/2)} - g^{t}}{\Delta t} + \mathcal{L}_{NLoc} \left\{ g^{t+(1/2)} \right\} = 0$$

$$\frac{g^{t+1} - g^{t+(1/2)}}{\Delta t} + \mathcal{L}_{Loc} \left\{ g^{t+1} \right\} = C \left\{ f_{*} \right\} + S$$

$$\frac{g^{t+1} - g^{t}}{\Delta t} + \mathcal{L}_{Loc}\left\{g^{t+1}\right\} + \mathcal{L}_{NLoc}\left\{g^{t+(1/2)}\right\} = C\left\{f_{*}\right\} + S$$

The nonlocal kinetic equation can be solved using operator splitting plus a *local* neoclassical code

$$\frac{\partial g}{\partial t} + \left(\upsilon_{\parallel} \mathbf{b} + \mathbf{v}_{\mathbf{E} \times \mathbf{B}}\right) \cdot \nabla \theta \frac{\partial g}{\partial \theta} + \left[-\upsilon B + \xi c R B_{tor} \frac{d\Phi}{d\psi}\right] \frac{(1 - \xi^2)}{2B^2} \nabla_{\parallel} B \frac{\partial g}{\partial \xi}$$

$$\int_{Loc} - \mathbf{v}_m \cdot \nabla \psi \frac{e}{m\upsilon} \frac{d\Phi}{d\psi} \frac{\partial g}{\partial \upsilon} + \mathbf{v}_m \cdot \nabla \psi \frac{\partial g}{\partial \psi} + C\{g\} = C\{f_*\} + S$$

$$\int_{NLoc} \int_{NLoc} \int_{N$$

$$\frac{g^{t+(1/2)} - g^{t}}{\Delta t} + \mathcal{L}_{NLoc} \left\{ g^{t+(1/2)} \right\} = 0$$

$$\frac{g^{t+1} - g^{t+(1/2)}}{\Delta t} + \mathcal{L}_{Loc} \left\{ g^{t+1} \right\} = C \left\{ f_{*} \right\} + S$$

$$\frac{g^{t+1} - g^{t}}{\Delta t} + \mathcal{L}_{Loc} \left\{ g^{t+1} \right\} + \mathcal{L}_{NLoc} \left\{ g^{t+(1/2)} \right\} = C \left\{ f_{*} \right\} + S$$

Global code predicts enhanced flow shear & modified j_{BS}

No source needed for mass or momentum because fluxes at ends automatically vanish.

The choice of source has some effect on the results

Shift in trapping region can be seen in the distribution function

Future work

• Iterative schemes with no $\partial f / \partial t$ or $\partial g / \partial t$ term, e.g.

to solve
$$\mathcal{L}_{Loc} \{g\} + \mathcal{L}_{NLoc} \{g\} = C\{f_*\} + S$$
 for g ,
iterate $\mathcal{L}_{Loc} \{g^{i+1}\} = -\mathcal{L}_{NLoc} \{g^i\} + C\{f_*\} + S$.

- Numerically solve the *nonlinear* problem: $\frac{\partial f}{\partial t} + (\upsilon_{\parallel} \mathbf{b} + \mathbf{v}_{d}) \cdot \nabla f = C\{f, f\}.$ (Allows $r_{Ti} \sim \rho_{pol}$.)
- Rigorous comparisons to finite- \mathcal{I}_r analytic limits.
- Study dependence of ion flow & $j_{\rm BS}$ on v_* , ε , and depth of Φ well.
- Stellarators.

Summary

- The full linearized Fokker-Planck operator has been included in local neoclassical calculations for finite ε and v_* .
- A local neoclassical code can be adapted for the pedestal using an operator-splitting time-advance.

Outstanding questions:

- Is there a better formulation in which a heat sink is not needed?
- Can the iterative scheme $\mathcal{L}_{Loc} \{g^{i+1}\} = -\mathcal{L}_{NLoc} \{g^i\} + C\{f_*\} + S$ be made stable?

Extra slides

Geometry is simple, but boundary conditions are tricky

Legendre polynomials are a good basis for the Rosenbluth potentials

$$H\left(heta,\xi,\upsilon
ight)=\sum_{\ell=0}^{N}H_{\ell}\left(heta,\upsilon
ight)P_{\ell}\left(\xi
ight)$$

$$\nabla^2 H = -4\pi f_1 \qquad \Rightarrow \qquad \frac{1}{\upsilon^2} \frac{d}{d\upsilon} \upsilon^2 \frac{dH_\ell}{d\upsilon} - \frac{\ell(\ell+1)}{\upsilon^2} H_\ell = -4\pi f_{1\ell}$$

2.5

2

1.5

1

2

3

41)

ODE instead of 2D PDE.

 $H_{\ell} \sim \frac{f_{1\ell}}{\ell^2}, \ G_{\ell} \sim \frac{f_{1\ell}}{\ell^4}, \ \text{so large } \ell \text{ components of } H \& G \text{ are negligible.}$

$$f_{1} \approx 0 \text{ for } \upsilon > 5\upsilon_{th}. \qquad \Rightarrow \qquad H_{\ell} \propto 1/\upsilon^{\ell+1}.$$

$$\Rightarrow \text{Gives boundary condition:} \qquad \upsilon \frac{dH_{\ell}}{d\upsilon} = -(\ell+1)H_{\ell} \text{ at } \upsilon = 5\upsilon_{th}.$$

 \Rightarrow Don't need to simulate $v > 5v_{th}$

Matrix is sparse & asymmetric with complicated structure

Sparse direct solver.

2-70 seconds to solve on a laptop.

Rate-limiting step is the solver.

My code agrees with code of Wong & Chan

For small v_{*}, "nondiamagnetic" distribution function is nearly constant along particle orbits

Let
$$g = f_1 + \frac{I \upsilon_{\parallel}}{\Omega} \frac{\partial f_0}{\partial \psi}$$

Analytic theory for $v_* \rightarrow 0$ (banana regime) predicts:

- $g = g(\mu, \nu)$ (i.e. it is independent of θ .)
- g = 0 for trapped particles.

For small v_{*}, "nondiamagnetic" distribution function is nearly constant along particle orbits

Code can resolve the boundary layer between passing and trapped phase-space

$$v_* = \frac{vqR}{v\varepsilon^{3/2}} = 0.01$$
 at v_{th} $\varepsilon = 0.3$

Radial ion heat flux

$$\left\langle \mathbf{q}_{i}\cdot\nabla\psi\right\rangle = -q\frac{\sqrt{\varepsilon}n_{i}I^{2}\upsilon_{th}^{2}}{\tau_{i}\Omega_{0}^{2}}\frac{dT_{i}}{d\psi}$$

