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Numerical schemes for a neoclassical pedestal

• Local neoclassical calculations with the full 
linearized Fokker-Planck collision operator

• Nonlocal (pedestal) neoclassical calculations

– Formulation of the drift-kinetic equation

– Operator splitting approach

– Need for sources

• Questions for you



Local neoclassical 
calculations with the 
full linearized Fokker-

Planck operator



Local drift-kinetic equation
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Equivalent form better suited for numerical work:

• These are 3 coupled linear 3D partial differential equations.

• Even as * → 0, details of C matter.  

• Pitch-angle scattering is expected to be a poor approximation for  C in the pedestal.

 2 2 2
2 2

1 9

1 1 1 ,

,  ...,  are known.a a

 
    
   

   
   

2
1

2

4 ,

2 ,

H f

G H

  

 



Vector of unknowns:

Discretization scheme
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Also a few rows for 
boundary conditions: • Regularity at = 0 • Derivatives of H & G at max
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Pitch-angle-scattering approximation is 
quantitatively poor for realistic 
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Numerical coefficient
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Nonlocal (pedestal) 
neoclassical 
calculations



In a pedestal, standard (local) neoclassical 
theory breaks down

From R. McDermott, 
2008 APS invited talk
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Standard bootstrap current calculations are formally not valid in the pedestal.

Assume  .pB B



Nonlocal drift-kinetic equation
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Nonlocal drift-kinetic equation
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To calculate nonlocal transport, you must 
solve a 4D integro-differential equation
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The nonlocal kinetic equation can be solved using 
operator splitting plus a local neoclassical code
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The nonlocal kinetic equation can be solved using 
operator splitting plus a local neoclassical code
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Local approximation
Base case
Doubling N
Doubling N
Doubling Nx
Doubling Nr
Doubling rMax
Halving dt

Global code predicts 
enhanced flow shear & modified jBS
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Poloidal flow:  
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High-order upwinded finite-difference differentiation in r .                   = 0.3, * = 1 – 0.3.



Problem: without a heat source, 
no truly time-independent solutions exist.
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With source
No source

No source needed for mass or momentum because fluxes at ends automatically vanish.
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The choice of source has some effect on the results
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Shift in trapping region can be seen 
in the distribution function
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Future work
• Iterative schemes with no f /t or g /t term, e.g.

• Numerically solve the nonlinear problem:

(Allows rTi ~ pol.)

• Rigorous comparisons to finite-Er analytic limits.

• Study dependence of ion flow &  jBS on *, and depth of  
 well. 

• Stellarators.
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Summary
• The full linearized Fokker-Planck operator has been included in 

local neoclassical calculations for finite  and *.

• A local neoclassical code can be adapted for the pedestal using an 
operator-splitting time-advance.

Outstanding questions:

• Is there a better formulation in which a heat sink is not needed?

• Can the iterative scheme
be made stable?
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Extra slides



Geometry is simple, but boundary 
conditions are tricky
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Legendre polynomials are a good basis for 
the Rosenbluth potentials
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ODE instead of 2D PDE.
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Matrix is sparse & asymmetric with 
complicated structure

Sparse direct solver.

2-70 seconds to solve on a laptop.

Rate-limiting step is the solver.



My code agrees with code of Wong & Chan

Coefficient of the parallel flow

Dots = my code

Solid line = Wong-Chan published result



For small *, “nondiamagnetic” distribution function 
is nearly constant along particle orbits
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 *Analytic theory for 0  banana regime  predicts: 

     ,    i.e. it is independent of .
  0  for trapped particles.
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For small *, “nondiamagnetic” distribution function 
is nearly constant along particle orbits
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v = 0.3 vth
v = 0.4 vth
v = 0.6 vth
v = 1.0 vth
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Code can resolve the boundary layer between 
passing and trapped phase-space
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Radial ion heat flux
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Analytical 
limit: 0.67


