F. Jenko (on behalf of H. Doerk)

with T. Görler, D. Told, D. Hatch, M. Pueschel

Nature and role of microtearing turbulence in conventional tokamaks

Max-Planck-Institut für Plasmaphysik, Garching

Nth Vienna meeting (N»1, thanks to Alex) March 19th-30th, 2012

Outline of the talk

- Historical context
- Studies of the linear microtearing **instability**
 - expect existence in conventional tokamaks?
 - what are the critical plasma parameters?
- Nonlinear dynamics: microtearing **turbulence**
 - magnetic fluctuation amplitudes?
 - role of magnetic stochasticity?
- Microtearing modes in **finite** β **ITG/TEM** turbulence

IPP

A brief history of microtearing research

- 1973: Small magnetic perturbations can lead to stochastic fields and enhanced electron heat flux ($\tilde{B}/B_0\sim 10^{-4}$) [Stix]
- 1975-77: Microtearing modes driven by ∇T_e are a possible source [Hazeltine et al., Drake et al., Chen et al.]
- **1980s and 1990s:** Linear theory of microtearing modes [Catto, Connor, Cowley, Drake, Hassam, Hastie, ...]
- **Since 2000:** Linear gyrokinetic simulations; microtearing modes responsible for electron heat flux in **spherical tokamaks**? [Kotschenreuther et al., Redi et al., Applegate et al.]
- 2007/08: Microtearing modes also in **medium aspect ratio tokamaks**? [Applegate et al., Vermare et al., Told et al.]
- **2010/11: Nonlinear gyrokinetic microtearing** simulations point to relevance for NSTX [Guttenfelder] and AUG (as well as ITER) [this work]

Scope of this work

Key questions:

- Properties of linear microtearing instabilities
- Electromagnetic **heat transport** due to microtearing turbulence
- Nonlinear saturation
 mechanism

Strategy:

- Gyrokinetic simulations
- Influence of **plasma parameters** (temperature gradient, beta, collisions...)
- Comparison to **analytical models**

gene.rzg.mpg.de

gene.rzg.mpg.de

Studies of the linear microtearing instability

Comparison of microinstabilities in ballooning space

⁶

ΠD

Global linear simulations of ASDEX Upgrade shot 26459

Microtearing instabilities expected to exist in AUG

System size effects

 ρ^* scan ($\rho^*=\rho_i/a$):

- Even for $\rho^*{\sim}1/100,$ the local results are fairly accurate
- $k_v \rho_i$ =0.12 is n=1 for ρ^* =1/50
- More toroidal mode numbers are microtearing unstable in larger tokamaks

Linear modes are well described in the local approximation

IPP

Growth rate spectra involving microtearing modes

Influence of electron temperature gradient and β_e

a/L_{Te} and β_{e} are critical plasma parameters

Collisional effects (a/L_{Te} and β kept constant)

- Including collisions is important
- Growth rate depends on collision frequency only **moderately** (in agreement, e.g., with Applegate `07)
- Experiments are in the semicollisional to collisionless regime

$$u_{
m c} \sim {
m n} \; {
m T}^{-3/2}$$
 but:

Microtearing modes can also be present in hot (core) plasmas

Thin current layers at resonant flux surfaces

Model of Drake (1977):

 ${\bf k}_{\parallel}=0$ at rational flux surface ${\bf x}={\bf 0}$: Nonadiabatic electron response until ${\bf k}_{\parallel}{\bf v}_{te}\approx\omega$ with ${\bf k}_{\parallel}\approx {\bf k}_{{\bf y}}{\bf x}/{\bf L}_{{\bf s}}$ and ${\bf L}_{{\bf s}}={\bf q}{\bf R}/\hat{{\bf s}}$

Nonlinear dynamics: Microtearing turbulence

Turbulent electron heat flux spectrum

Simulation setup:

- sufficiently large radial box
- high radial resolution

384x64x24x32x16 grid points in 5D (x,y,z,v_{||}, μ) phase space

Very challenging simulations!

Simplifications:

- **ITG** drive switched **off** (avoid multimode drive)
- **Circular** magnetic geometry [Lapillonne et al. 2009] (allow for maximum flexibility)

Heat flux is dominated by magnetic component at low k_v

Magnetic fluctuation level in microtearing turbulence

R/L_{Te} scaling

- "scatter": reduction of the nominal **resolution** by a factor of 2-3 in various phase-space dimensions
- \bullet Other parameters like β are important

Drake's formula yields good estimate, but neglects $\boldsymbol{\beta}$ effects etc.

Model by Drake (1980): $ilde{\mathbf{B}}/\mathbf{B}\sim oldsymbol{
ho}_e/\mathbf{L}_{ ext{Te}}$

The role of magnetic stochasticity

Diffusivity model:

 $\chi_e^{em} = v_{te} D_M$

 $D_M = L_C (\delta B/B_0)^2$ (quasilinear result) use $L_C = qR$ as correlation length

 $\chi^{\mathbf{e}}_{\mathbf{em}} = 1.37 \mathbf{q} \mathbf{R} \mathbf{v}_{\mathbf{te}} (\mathbf{\tilde{B}_x} / \mathbf{B_0})^2$

- Effective threshold for onset of strong transport (A to B)
- In stochastic cases **(B)**, GENE results confirm test-particle models (e.g. Liewer 1985, collisionless case)

Nonlinear saturation of microtearing turbulence

Free energy transfer to medium k_v , where it is dissipated

Microtearing modes in finite β ITG/TEM turbulence

Detailed account: D. Hatch (next week)

IPP

Motivation: Recent results on finite β turbulence

- Electron magnetic heat transport can approach (or even surpass) electrostatic transport as β increases [Candy PoP `05, Pueschel PoP `08]
- Magnetic transport violates quasilinear theory β^2 -scaling

Observation of near-ubiquitous **magnetic**

stochasticity – even at low values of β

(Nevins PRL '11, Wang PoP '11)

2/(v.o.²p₀/R²) , Γ/(v.o.²n₀/R²) 150 ∆Q^{ee} ITG-TEM KBM × 0." 100 0 Qem 50 0.2 0.41.0 1.2 0.0 0.60.8 1.4% β Pueschel PoP '08 β=0.1% Nevins PRL`11 ...needs an explanation! 19

IPP

What is the reason for magnetic stochasticity?

- **Ballooning parity** modes: no reconnection/stochastic fields
- Tearing parity modes allow reconnection
- Analysis: **POD** of vector potential (optimal basis) : $A_{\parallel k}(z,t) = \sum A_{\parallel k}^{(n)}(z)h_k^{(n)}(t)$
- First two modes (ballooning and tearing) plus residual modes

Magnetic transport – superposition of ITG and tearing

- **`Dip'** in the magnetic **electron heat transport spectrum** (at k_y of electrostatic transport peak) [Candy, PoP`05]
- Understood by attributing transport to ballooning and tearing part of B_x
- Stochastic transport **explains** $Q_e^{EM} \sim \beta^2$

Origin of the magnetic electron heat transport

- GENE eigenmode solver finds all gyrokinetic eigenmodes
- Nonlinearly evolved distribution function projected onto 1000 orthogonalized linear eigenmodes (k_vρ_i=0.2,k_xρ_i=0)
- One damped eigenmode dominates, has properties of microtearing mode
- Analysis of nonlinear transfer: Excitation via coupling to zonal modes

Nonlinearly excited microtearing mode causes electromagnetic heat flux

Summary & Outlook

Summary & Outlook

- **Microtearing modes** are expected to exist in **ASDEX Upgrade** and presumably also in other medium-aspect-ratio tokamaks like **ITER**
- Nonlinear gyrokinetic simulations establish microtearing as a candidate to explain electron heat flux in outer core of tokamaks: χ^e_{em}~1m²/s
- Magnetic stochasticity occurs when magnetic fluctuation amplitude exceeds an effective threshold (in analogy to Dimits shift)
- Nonlinearly excited (linearly stable) microtearing modes cause stochasticity and magnetic electron heat flux in ITG turbulence
- Underway: Microtearing + ITG turbulence (preliminary result: coexistence!)

References:

- Doerk et al., PRL 2011
- Doerk et al., APS / PoP
- Hatch et al., submitted