

The Zero-Turbulence Manifold in a Toroidal Plasma

E. G. Highcock, A. A. Schekochihin, M. Barnes, F. I. Parra, S. C. Cowley

Vienna 2012

Outline

- Turbulence and Sheared Flows
- Zero Magnetic Shear
- Subcritical Turbulence and Transient Fluctuations
- The Zero-Turbulence Manifold

Turbulence

• Turbulent transport of heat limits the performance of fusion devices.

Large background gradients

Unstable linear eigenmodes

Nonlinear interaction

Formation of eddies

Transport of Heat, Particles and Momentum

x (rho_i)

Vienna 2012

Sheared Flows

- Consider turbulence in a toroidal device with a strong background sheared flow.
- A gradient of the perpendicular component of the flow can suppress turbulence.
- A gradient of the *parallel* component of the flow can drive an instability. Catto et al., 1973
 - Increase the turbulence
- In a torus with toroidal flow:

Equations and Numerics Summary

- Use gyrokinetic nonlinear flux tube code GS2. Dorland & Jenko 2000
- Solve the δf gyrokinetic equation. Friemen & Chen 1982
- Use a first principles treatment of the equilibrium flow shear. Sugama & Horton 1998, Hammett et. al. 2006
- Use Cyclone Base Case parameters (core turbulence). Dimits et. al. 2000
 - Varying temperature gradient, flow shear, magnetic shear
- Published:
 - Highcock et. al., PRL,105, 215003 (2010)
 - Barnes et. al., PRL 106, 175004 (2011)
 - Parra et. al., PRL 106, 115004 (2011)
- Full details, equations, and references:
 - arXiv.org: 1105.5750

The Effects of Flow Shear at Constant R/L_T

• The perturbed potential experienced by the particle is averaged over an orbit.

Long wavelength potential perturbation: particle sees strong field.

• The perturbed potential experienced by the particle is averaged over an orbit.

• Short wavelength potential perturbation: field averages to zero.

• Start with long wavelength and a flow with a perpendicular gradient.

• Flow shears the field, increasing its wavenumber.

• Eventually particle sees zero averaged field.

The Effect of Magnetic Shear

The Effect of Magnetic Shear

• Velocity shear cancelled if the mode moves with speed

- Waltz et. al. 1994 Newton et. al. 2010
- => Linear modes possible for low γ_E and finite \hat{s}
 - Regions 1 & 2

 γ_E

 \hat{s}

No linear modes for

 $\frac{\gamma_E}{\hat{s}} \gg c_s$

Newton et. al. 2010

Region 3

The Effects of Flow Shear at Constant R/L_T

- Region 4: Strong PVG driven turbulence
- No linearly growing modes

Vienna 2012

Zero Magnetic Shear

 γ_E

- $\overline{\hat{s}}$ is infinite.
- The turbulence is subcritical for all non-zero flow shear
- No growing linear modes exist.
- Regions 1 & 2 disappear
- Heat flux is lower
- Turbulence stabilised more rapidly by the flow shear.
- Much larger region where there is no turbulence at all.

Barnes et. al. 2011

Vienna 2012

Subcritical Turbulence

- No linearly growing modes
- Transient growth only
- Required to sustain turbulence:
 - sufficient initial amplitude
 - sufficient amplification
 - non-linear interaction
- Many well known neutral fluid examples

Subcritical Turbulence

- Subcritical turbulence occurs at high flow shear...
 - We would like to eliminate it!
- What are the criteria which determine when subcritical turbulence can be sustained?
- No longer a linear growth rate
 - How can we use linear theory to understand nonlinear results?
 - How can we make an estimate of where subcritical turbulence can and cannot be sustained?

Zero Magnetic Shear Slab

Shearing Box

$$t' = t$$
, $x' = x$, $y' = y - Sxt$, $z' = z$

$$k_{\perp}^{2} = \left(k_{x}^{'} - Sk_{y}^{'}t\right)^{2} + k_{y}^{'2}$$

Transient Growth

- 2 Cases: PVG, ITG-PVG
- 3 Stages:
 - Short time limit unsheared growth
 - Intermediate time growth turns to decay
 - Long time decay

Intermediate Time

• In the limit

 $St \gg 1, Stk_y \rho_i \gg 1$

- Expand Bessel functions in 1/t
- Solve to find the point at which $\gamma(t)=0$

$$t_0 = \frac{(q/\epsilon)\bar{\omega}_S - 1}{(1 + \tau/Z)\sqrt{\pi}(\bar{\omega}_S^2 + 1)|\bar{\omega}_S|}$$

- Write time dependent dispersion relation in terms of t_0

$$\frac{t}{t_0} = 1 + i \tilde{\gamma} \, Z(i \tilde{\gamma})$$

Calculate Exponentiation

$$N=\int_{0}^{t_{0}}dtar{\gamma}(t)$$

Maximum Exponentiation

ITG limit

Vienna 2012

Motivation For Nmax

In Region 4:

- Subcritical turbulence driven by PVG.
- Spectrum follows the line of maximal amplification

$$k_y \rho_i \simeq \left(\frac{r_0}{R_0 q_0}\right)^{1/3} \frac{k_{\parallel} R_0}{\sqrt{2} \gamma_E}$$

Linear Prediction

- Assume $N_{\rm max} \sim 1$ for turbulence to be sustained.
- How can we maximise the temperature gradient without generating turbulence.
- Linear prediction:
 - Minimise q/ϵ , the ratio of the magnetic safety factor to the inverse aspect ratio
 - Maximise the perpendicular flow shear.

Nonlinear Scan

The Zero Turbulence Manifold

• Interpolate to get the zero turbulence manifold:

Maximising the Temperature Gradient

- Still find lowest value of q/ϵ
- Now need to find *optimum* value of flow shear (rather than maximising it).

Compare with Prediction using $N_{\rm max} \sim 1$

Linear prediction

• Nonlinear Manifold

Using fitting formula

Linear Prediction

• Nonlinear Manifold

Summary

- At zero magnetic shear, considered subcritical turbulence that occurs at non-zero flow shear.
- Nonlinear scan of the 3-way interaction of ion temperature gradient, parallel flow shear and perpendicular shear flow.
- Calculated the manifold that divides the regions in the parameter space of those three parameters where turbulence can and cannot be sustained.
- To get the highest temperature gradient without turbulence:
 - Minimise q/ϵ
 - Find the optimum value of perpendicular flow shear
- Can achieve R/LT > 20
- Linear predictions need a little work!

•