#### David R. Hatch Contributors: M. J. Pueschel<sup>(2)</sup>, F. Jenko<sup>(1)</sup>, W. M. Nevins<sup>(3)</sup>, P. W. Terry<sup>(2)</sup>, H. Doerk<sup>(1)</sup>

Magnetic stochasticity and transport due to nonlinear excitation of microtearing modes

<sup>(1)</sup>Max-Planck-Institut für Plasmaphysik, Garching
 <sup>(2)</sup>University of Wisconsin - Madison
 <sup>(3)</sup>Lawrence Livermore National Lab



### Electromagnetic effects

 $\rightarrow$  High beta is very desirable for a

 $n_{0e^{\perp}}$ 

fusion plasma.

a.  

$$nT\tau_E = 3 \times 10^{21} m^{-3} keVs$$
  
 $n_{0e}T_{0e}$   
 $B_0^2/2\mu_0$  What is the effect  
on turbulent transport?



Confinement time: Wide variation in beta scaling

 $au_E \propto eta^{-lpha}$ 



### ITG Turbulence with Electromagnetic Effects

Before nonlinear GK microtearing was tackled . . .

→basic question

## What do electromagnetic effects do in basic ITG/ETG turbulence?

Addressed by several studies in past decade:

Specifically ITG: Parker PoP '04, Candy PoP '05, Pueschel PoP '08, Waltz PoP '10, Nevins PRL '11, Wang PoP '11



4

### ITG has Ballooning Parity not Tearing Parity

Field following coordinates:

Resonant (tearing) component of  $A_{\parallel}$  extracted with an integral along field line.

ITG - Ballooning parity: no resonant component

Tearing parity: contains resonant component





### Significant Electromagnetic Transport

ITG driven turbulence:

Levels of electron electromagnetic heat transport that approach electrostatic transport as beta increases [Candy PoP '05, Pueschel PoP '08].



Magnetic transport – unusual k<sub>y</sub> spectra



Electromagnetic flux spectrum has "dip" at scales where electrostatic transport peaks.



### Anomalous beta scaling

ITG driven turbulence:

Magnetic transport violates quasilinear theory –  $\beta^2$ -scaling.





### Introduction – Recent Results

ITG driven turbulence:

Near-ubiquitous magnetic stochasticity – even at low values of beta [Nevins PRL11, Wang PoP '11]





### What is the cause?

Observations of electromagnetic effects inconsistent with properties of the driving ITG modes.

### Question:

What is the explanation for the observed stochasticity and transport?

Answer:

Stochasticity and transport are due to the nonlinearly excitation of damped\* microtearing modes.

\*Damped eigenmode studies:

Gyrokinetic: Hatch PRL '11, PoP '11 Fluid models: Terry PoP '06, Kim PoP '10, Makwana PoP '11



### **Description of Simulations**

Simulation data from GENE code: http://gene.rzg.mpg.de



Cyclone Base Case parameters plus electromagnetic effects (finite  $\beta$ ).

 $\beta$  scan (ranging from electrostatic to 1.2%)



## POD\* used to separate tearing and ballooning fluctuations

Challenge: isolating two distinct modes operating at the same scales.

Proper Orthogonal Decomposition:  $A_{\parallel k}(z,t) = \sum_{n} A_{\parallel k}^{(n)}(z) h_{k}^{(n)}(t)$ 

 $A^{(n)}_{\parallel}$ , and  $h^{(n)}$  are orthogonal and 'optimal' – most efficient decomposition.

n=1 and n=2 modes define a ballooning component and a tearing component.



\*Selected POD references: Berkooz, Annu. Rev. Fluid Mech. '93, Futatani, PoP, '09 11

#### IPP

## Tearing parity contributes to nonlinear fluctuations

#### Ballooning





 $Re[A_{\parallel}]$  fluctuations (k<sub>x</sub>=0.0,k<sub>y</sub>=0.3)

Total Nonlinear  $A^{(1)}_{\parallel}h^{(1)}(t)$ 

### IPP

## POD → Two modes account for most of nonlinear fluctuations

Ballooning





Re[A<sub>||</sub>] fluctuations (k<sub>x</sub>=0.0,k<sub>y</sub>=0.3) — Total Nonlinear  $A_{\parallel}^{(1)}h^{(1)}(t) + A_{\parallel}^{(2)}h^{(2)}(t)$ 



### Perfect ballooning parity no longer enforced at |kx|>0



Even / Odd symmetry is no longer enforced at  $k_x \neq 0$ . But modes are still "predominantly even" or "predominantly odd".

➔ Distinguish with Parity Factor

$$P = \frac{\left|\int dz A_{\parallel k_x, k_y}(z, t)\right|}{\int dz \left|A_{\parallel k_x, k_y}(z, t)\right|}$$

Construct a "tearing-ballooning" decomposition:

$$A_{\|k_x,k_y}(z,t) = A_{\|k_x,k_y}^{(ball)}(z,t) + A_{\|k_x,k_y}^{(tear)}(z,t) + A_{\|k_x,k_y}^{(res)}(z,t)$$



## Stochasticity caused by tearing component

 $A_{\parallel k_x, k_y}(z, t) = A_{\parallel k_x, k_y}^{(ball)}(z, t) + A_{\parallel k_x, k_y}^{(tear)}(z, t) + A_{\parallel k_x, k_y}^{(res)}(z, t)$ 





$$A^{(ball)}_{{}_{\parallel k_x,k_y}}(z,t)$$









## Magnetic transport – superposition of ITG and tearing





### POD of distribution function: Self consistent $A_{\parallel}$ , $\phi$

Construct POD of distribution function:

$$g_{kx,ky}(z,v_{\parallel},\mu,t) = \sum_{n} f_{kx,ky}^{(n)}(z,v_{\parallel},\mu)h_{kx,ky}^{(n)}(t)$$

→ Tearing parity mode with large heat flux (POD n~2-5)



#### 18

### Excitation mechanism: coupling with k<sub>y</sub>=0

$$\frac{\partial E_{k}^{(tear)}}{\partial t} = L[g_{k}^{(tear)}, g_{k}] + \sum_{k'_{\perp}} N[g_{k}^{(tear)}, g_{k'}, g_{k-k'}] + c.c.$$

Free energy evolution equation for tearing mode



Nonlinear mechanism which stabilizes ITG in turn drives microtearing and produces additional transport channel.



# Linear spectrum – many modes with tearing parity

Using GENE eigenmode solver.

|                                | ITG | TITG | ETG | TETG | Micro<br>Tearing <sup>(1)</sup> |
|--------------------------------|-----|------|-----|------|---------------------------------|
| Tearing<br>Parity              |     | Х    |     | Х    | Х                               |
| Frequency                      | +   | +    | -   | -    | -                               |
| R/Lti<br>Threshold             | Х   | Х    |     |      |                                 |
| R/Lte<br>Threshold             |     |      | Х   | Х    | Х                               |
| Low-β<br>Threshold             |     |      |     |      | Х                               |
| Change<br>when ¢ is<br>deleted | Х   | Х    | Х   | Х    |                                 |

TITG, TETG: Not the cause of the transport.

Transport caused by (some form of) microtearing.

(1) Doerk, PRL, '11,

# Microtearing mode responsible for stochasticity and transport



Scalapack eigenmode solver (incorporated in GENE code) solves for all eigenmodes (limited resolution).

Nonlinearly evolved distribution function projected onto 1000 orthogonalized linear eigenmodes ( $k_y \rho = 0.2, k_x \rho = 0.0$ ).

One damped mode produces EM transport, has properties of microtearing mode.



### Simple model captures β-dependence

$$Q_e^{EM(tear)}(\beta) = C_0 \beta^2 Q_i^{ES}$$
 Stochastic tearing transport





### Microtearing tests

#### **Collisionality Dependence**



#### **Convergence Tests:**

$$k_x^{\max} \rho_s \approx 5.9 \Longrightarrow 11.0$$

Qualitatively same EM transport

Also tested: significant increases in z, and phase space resolution





### Summary / Conclusions

- GENE code used to study electromagnetic transport in ITG  $\beta$  scan.
- Stochasticity and transport caused by nonlinear excitation of subdominant microtearing modes.
- Magnetic transport is superposition of outward stochastic contribution from nonlinearly excited microtearing modes and inward contribution from ITG.
- Nonlinear excitation mechanism **coupling with zonal wavenumbers**.
- Linear mode has properties of traditional microtearing mode.
- Simple model captures β dependence in spite of inapplicability of quasilinear theory.



### Backup slides



# Nonlinear transfer functions - identify excitation mechanism.

Gyrokinetic free energy:

$$E_{k} = \sum_{j} \pi B_{0} n_{0j} T_{0j} \int dz dv_{\parallel} d\mu J(z) \frac{f_{j}^{2}}{F_{0j}} + D(k_{\perp}) \phi^{2} + \frac{k_{\perp}^{2}}{\beta} A_{\parallel}^{2}$$
  
Energy evolution equation:

$$\frac{\partial E_k}{\partial t} = L[g_k, g_k] + \sum_{k_\perp} N[g_k, g_{k'}, g_{k-k'}] + c.c.$$

Nonlinear Transfer function:

$$N_{k,k'} = \int dz dv_{\parallel} d\mu (k_x' k_y - k_x k_y') \left[ \frac{q_j F_{oj}}{T_{0j}} \chi_j^*(k) \chi(k') g(k-k') - g_j^*(k) \chi(k-k') g(k') \right]_{-1}^{-1}$$

Energy transferred between k and k'

$$N_{k,k'} = -N_{k',k}$$



### **Contributions to EM Transport**

$$\begin{split} Q_{e}^{EM} &= \langle \tilde{q}_{e||} \tilde{B}_{x} \rangle / B_{0} \\ \tilde{q}_{e||} &= -n_{0e} \chi_{e||} \left( \frac{d\tilde{T}_{e||}}{dz} + \frac{\tilde{B}_{x}}{B_{0}} \frac{d\tilde{T}_{e||}}{dx} + \frac{\tilde{B}_{x}}{B_{0}} \frac{dT_{e0}}{dx} \right) \\ \text{ITG mechanism} & \text{Stochastic} \\ \text{transport} \\ (\text{tearing}) \\ \text{mechanism} \end{split}$$