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Overview

Braginskii magnetohydrodynamics (MHD)

• Fluid description for “strongly magnetised” plasmas

•Valid on lengthscalesÀ mean free pathÀ gyroradius

•Covers many astrophysical plasmas e.g. solar corona, tokamak edges

•Anisotropic viscous stress directed along magnetic field lines

•Gyroviscous stress perpendicular to both strain rate and magnetic field

Flow between two parallel planes

•Problem geometry and formulation

•Hartmann layers

•Current singularities at the walls

•Regularisation by perpendicular stress [see JFM 667 520]

•Regularisation by gyroviscous stress



Braginskii’s magnetohydrodynamics (part 1)

Strongly magnetised plasmas: particles are tied to magnetic field lines.

B

Effective mean free path perpendicular to field lines is the gyroradius.

Braginskii’s (1965) theory: viscous stress aligned with the magnetic field,

Πvisc ≈ −2µ‖ b̂b̂ b̂b̂ : ∇u (where b̂ = B/|B|)
“Strongly magnetised” when ωiτi À 1.



Braginskii’s magnetohydrodynamics (part 2)

Single-fluid description using Braginskii’s viscous stress
[see Lifshitz & Pitaevskii “Physical Kinetics” or Schekochihin et al. 2005]

Momentum equation is

ρ
Du

Dt
+∇· ( pI + 1

2|B|2 I−BB + Πvisc

)
= 0.

total stress = pressure + Maxwell stress + viscous stress.

Take as incompressible, ρ = cst and∇·u = 0. (Small Mach number)

Magnetic field B evolves through Faraday’s and Ohm’s laws

∂tB = ∇× (
u×B− η‖ j‖ − η⊥ j⊥

)
,

where η⊥ = 1.96 η‖.



The full Braginskii (1965) viscous stress . . .

Πvisc = η0W
(0) + η1W

(1) + η2W
(2) + η3W

(3) + η4W
(4).

Five separate contributions:

W(0) = 3
2(b̂b̂− 1

3I)b̂ ·W · b̂,

W(1) = (I− b̂b̂) ·W · (I− b̂b̂) + 1
2(I− b̂b̂)b̂ ·W · b̂,

W(2) = (I− b̂b̂) ·W · b̂b̂ + b̂b̂ ·W · (I− b̂b̂),

W(3) = 1
2b̂×W · (I− b̂b̂)− 1

2(I− b̂b̂) ·W×b̂,

W(4) = (b̂×W · b̂) b̂− b̂ (b̂×W · b̂),

where the strain rate is

W = ∇u + (∇u)T − 2
3 I∇·u .

The classical values for the five viscosities:

η0 = 0.96 niTiτi, η1 =
3

10

niTiτi

(ωiτi)2
, η2 = 4η1, η3 =

1

2

niTiτi

ωiτi
, η4 = 2η3.



A simpler (astrophysical) regularisation

Regularise with a perpendicular viscosity µ⊥ ¿ µ‖. Write the stress as

Πvisc = −µ⊥W − (µ‖ − µ⊥)b̂b̂ b̂b̂ : W,

where W = ∇u + (∇u)T for an incompressible fluid.

In axes with the first axis aligned with the direction b̂,

Πvisc = −




µ‖
µ⊥

. . .

µ⊥




(∇u + (∇u)T
)
.

Similar to liquid crystals, except µ⊥ ¿ µ‖ instead of µ⊥ ∼ µ‖.



Astrophysical applications: galaxy clusters



Astrophysical applications: solar corona

Transition Region and Coronal Explorer (TRACE) composite from 171Å, 195Å, 284Å lines



Astrophysical applications: solar corona in close-up

Transition Region and Coronal Explorer (TRACE) image at 171 Å, roughly 106 Kelvin.



Hartmann / channel flow [c.f. Lyutikov 2008 ApJ]

Fields u = U0(0, u(x), v(x)) and B = B0(1, b(x), c(x)).

Magnetic field direction is b̂ =
(1, b, c)√
1 + b2 + c2

.

Strain components Wxy = Wyx = U0
du

dx
and Wxz = Wzx = U0

dv

dx
.



Governing equations

Induction equation using η⊥ in Ohm’s law

B0U0
du

dx
+

η⊥B0

L

d2b

dx2
= 0, B0U0

dv

dx
+

η⊥B0

L

d2c

dx2
= 0,

Neglect distinction between η⊥ and η⊥ = 1.96 η‖.

Scale x with L, and choose velocity scale U0 = η⊥/L.

Dimensionless induction equations are

0 =
du

dx
+

d2b

dx2
, 0 =

dv

dx
+

d2c

dx2
.

Boundary conditions: u = v = b = c = 0 on walls x = ±1/2.



Momentum equations

Momentum equations with streamwise forcing F = dp/dx

0 = F +
B2

0

L

db

dx
+

1

L

d

dx
Πxy, 0 =

B2
0

L

dc

dx
+

1

L

d

dx
Πxz.

Integrate once in x,

0 = FLx + B2
0b + Πxy, 0 = B2

0c + Πxz.

Sum of forcing plus Maxwell stress plus viscous stress is constant.

Now eliminate
du

dx
= −d2b

dx2
,

dv

dx
= −d2c

dx2
.

Reconstruct velocities later from the magnetic field,

u(x) =
db

dx

∣∣∣
wall
− db

dx
, v(x) =

dc

dx

∣∣∣
wall
− dc

dx
.



Dimensionless momentum equations

Eliminating u and v and rescaling gives

Ha2(fx + b)− 2b
b
d2b

dx2
+ c

d2c

dx2

(1 + b2 + c2)2
+ ε

2− b2 − c2

(1 + b2 + c2)3/2

d2c

dx2
= O(ε2),

Ha2c− 2c
b
d2b

dx2
+ c

d2c

dx2

(1 + b2 + c2)2
− ε

2− b2 − c2

(1 + b2 + c2)3/2

d2b

dx2
= O(ε2),

with parameters

Ha =
B0L

(4πη⊥µ‖)1/2
, f =

4π FL

B2
0

, ε =
µ×
µ‖

=
25

72
(ωiτi)

−1 ¿ 1.

Lorentz/viscous forcing/Lorentz gyro/parallel

Parallel viscosity µ‖ = (2/3)η0 and gyroviscosity µ× = η3.



Numerical solution – streamwise field (b)
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Ha = 10, f = 1 two-point boundary value solver (Cash & Mazzia 2005)



Numerical solution – out of plane field (c)
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Numerical solution – streamwise velocity (u)
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Numerical solution – out of plane velocity (v)
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Magnetic field in the core

In most of the domain b = O(1) and c = O(ε).

Leading order equation for b is

fx + b =
1

Ha2

2b2

(1 + b2)2

d2b

dx2
.

When Ha À 1 the solution is b = −fx outside O(1/Ha)-wide Hartmann
boundary layers at the walls.

Having solved for b, the out-of-plane field c is given by the algebraic relation

c = ε
fx + b

2bfx
(b2 − 2) (1 + b2)1/2,

which becomes c ∼ −ε/b for |b| ¿ 1.

The assumption c ¿ b breaks down as b → 0 at the walls.



Hartmann layers (near wall, ε = 0, Ha À 1)

The linear profile b = −fx cannot satisfy b = 0 at the walls x = ±1/2.

The viscous stress reappears in O(1/Ha)-wide boundary layers at the walls,
as in standard MHD.

Rescale to bring in the viscous stress near the walls:

0 =

(
−1

2
+

Y

Ha

)
f + b− 2b2

(1 + b2)2

d2b

dY 2
, where x = −1

2
+

Y

Ha
.

After dropping the small Y/Ha term, we get an x-independent ODE.

d2b

dY 2
+ V ′(b) = 0

for a particle in a potential.

The Maxwell stress plus the viscous stress is spatially uniform in these scalings.



Hartmann layer solutions

Multiply by db/dY and integrate once(
db

dY

)2

= E − V (b), for V (b) =

[
b +

b3

6
− 1

2b

]
f − b2− log b− b4

4
.

The potential V has a maximum at b = 1
2f .

The outer linear solution b = −fx tends to 1
2f at the left wall.

Matching the Hartmann layer to the outer solution implies b → 1
2f as

Y →∞. We also impose the wall boundary condition b = 0 at Y = 0.

The implicit solution is

Y =

∫ b

0

(
V (1

2f )− V (s)
)−1/2

ds.

Exploiting s ¿ 1,

b ∼ 1
2 32/3 f 1/3 Y 2/3 as Y → 0.

We satisfy b = 0 at the wall, but the current db/dx becomes infinite.



Hartmann layer matching condition
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Comparison of Hartmann layer solutions
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Numerical solutions versus Hartmann layer solution (b)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

Y

b

 

 

Ha=10

Ha=30

Ha=100

Ha=1000

Ha → ∞



Numerical solutions versus Hartmann layer solution (c)
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Inner wall layers

Outer scaling b = O(1) and c ∼ −ε/b ¿ b breaks down for b ∼ ε1/2.

Rescale for b ∼ ε1/2 and c ∼ ε1/2 using

b = ε1/2B, c = ε1/2C, x = − 1

2
+

2√
f Ha

ε3/4X.

The ε3/4 scaling of x balances the gyroviscous terms with the forcing.

Universal ODE system
d2C

dX2
= 1 + BC,

d2B

dX2
= −C2.

Boundary conditions:

•B = C = 0 on X = 0,

•Matching to the Hartmann layer as X →∞.



Matching conditions

Inside the Hartmann layer

c = ε
fx + b

2bfx
(b2 − 2)(1 + b2)1/2 ∼ −ε

b
as b → 0.

In wall layer variables (van Dyke’s matching rule)

C ∼ −1/B as B →∞.

Putting C = −1/B into the universal ODEs gives

d2B

dX2
= − 1

B2
.

The solution
B(X) = 32/32−1/3X2/3

coincides with the Hartmann layer solution in the original variables,

b ∼ 1
2 32/3 f 1/3 Ha2/3

(
x + 1

2

)2/3
as x → 0.



Universal inner wall layer solution (numerical)
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B ∼  B∞ = 32/3 2−1/3 X2/3

C ∼  C∞ = −1/B∞

as X → ∞

B
C
B∞
C∞

BX(0) = 1.253 . . . CX(0) = −0.886 . . . Cmin = −0.465 . . .



Numerical solutions versus inner wall layer analysis for B
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Numerical solutions versus inner wall layer analysis for C
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Peak velocity scaling

The maximum streamwise velocity is

umax = 1.253 . . . 1
2f

1/2 Ha ε−1/4.

from integrating the dimensionless induction equation

du

dx
+

d2b

dx2
= 0,

to obtain

u(x) =
db

dx

∣∣∣
wall
− db

dx
.

Similarly, the maximum out-of-plane velocity is

|vmax| = 0.987 . . . 1
2f

1/2 Ha ε−1/4.

Neither result depends upon knowing the detailed solution in the core.



Universal inner solution for the out-of-plane velocity (V )
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Maximum velocities, theory versus numerical solutions
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Conclusions

Braginskii magnetohydrodynamics describes strongly magnetised plasmas
on lengthscalesÀ mean free pathÀ gyroradius.

Three different viscosities: parallel µ‖À gyro µ×À perpendicular µ⊥.

In Hartmann flow the parallel viscous stress vanishes on the walls, so
Braginskii MHD needs regularising, e.g. by gyroviscous stresses

Asymptotic solution contains

• Hartmann layers, thickness∼ Ha−1 .

• Inner wall layers, thickness∼ (µ×/µ‖)3/4 Ha−1 ∼ (Ωiτi)
−3/4 Ha−1 .

Regular solution with gyroviscosity alone. No perpendicular viscosity needed.

Peak velocities and peak currents scale as (µ×/µ‖)−1/4 ∼ (Ωiτi)
1/4.

No well-defined limit as µ×/µ‖ → 0 .

“Planar channel flow in Braginskii magnetohydrodynamics” JFM 667 520

“Lattice Boltzmann formulation for Braginskii MHD” Comput. & Fluids 46 201


