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Overview
Braginskii magnetohydrodynamics (MHD)
e Fluid description for “strongly magnetised” plasmas
e \alid on lengthscales > mean free path > gyroradius
e Covers many astrophysical plasmas e.g. solar corona, tokamak edges
® Anisotropic viscous stress directed along magnetic field lines
® Gyroviscous stress perpendicular to both strain rate and magnetic field
Flow between two parallel planes
e Problem geometry and formulation
e Hartmann layers
e Current singularities at the walls
e Regularisation by perpendicular stress [see JFM 667 520]

e Regularisation by gyroviscous stress



Braginskii’'s magnetohydrodynamics (part 1)
Strongly magnetised plasmas: particles are tied to magnetic field lines.

B

Effective mean free path perpendicular to field lines is the gyroradius.

Braginskii’s (1965) theory: viscous stress aligned with the magnetic field,
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Il & =21 bbbb : Vu (where b = B/|B))

“Strongly magnetised” when w;7; > 1.



Braginskii's magnetohydrodynamics (part 2)

Single-fluid description using Braginskil’s viscous stress
[see Lifshitz & Pitaevskii “Physical Kinetics” or Schekochihin et al. 2005]

Momentum equation is

D
pD_‘; + V- (pI+1BJ’I—BB +11,,) = 0.

total stress = pressure + Maxwell stress —+ viscous stress.

Take as incompressible, p = cst and V-u = 0. (Small Mach number)

Magnetic field B evolves through Faraday’s and Ohm’s laws

0B = Vx (uxB —njj —n1jL),
where 7| = 1.9677H.



The full Braginskii (1965) viscous stress ...

IL. = W + WY+ W+ W 4 W,

Five separate contributions:

W' = 3(bb — iI)b- W - b,
W = (I—-bb)-W . (I—bb)+i(I—-bb)b-W.b,
W = (I—bb)-W -bb+bb-W - (I-bb),
W® = lbxW . (I - bb) - LI - bb) - Wxb,
WY = (bxW -b)b — b (bxW - b),
where the strain rate is
W =Vu+ (Vu)' —2IV-u.
The classical values for the five viscosities:
o = 0.96 i Tim, m = 130 ZZ}Y;; Mo = 4, 13 = %nf: N = 213.



A simpler (astrophysical) regularisation

Regularise with a perpendicular viscosity (| << f4||- Write the stress as

A A A A

Il = —p W — (1) — 12 )bb bb : W,

where W = Vu + (Vu)! for an incompressible fluid.

In axes with the first axis aligned with the direction b,
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(Vu+ (Vu)').

Similar to liquid crystals, except | < [ instead of (i ~ 4.



Astrophysical applications: galaxy clusters

Abell 2199

Chandra (X-ray) DSS (Optical)

- L

®

I — _4 h
redshift, z = 0.0309 50 thousand light years




Astrophysical applications: solar corona

Transition Region and Coronal Explorer (TRACE) composite from 171A, 195A, 284A lines



Astrophysical applications: solar corona in close-up

Transition Region and Coronal Explorer (TRACE) image at 171 A, roughly 10° Kelvin.



Hartmann / channel flow [c.f. Lyutikov 2008 ApJ]

! ;\ i L /Ha X
- M
1 B I u = (0,u(x),v(x)) y

T

| i/ iL/Ha

Fields u = Uy(0, u(z),v(z)) and B = By(1,b(x), c(x)).
(1,0, c)
V1+b02+c2
du dv

Strain components W, = W, = Uod— and W,.. =W, = Uod—.
x x

Magnetic field direction is b =




Governing equations

Induction equation using 77| in Ohm'’s law

d B, d°b
ByU, U 71 Do

dv n, By d*c B

i L de O Polog

Neglect distinction between 77, and 7, = 1.96 7.

Scale  with L, and choose velocity scale Uy = 1, / L.

Dimensionless induction equations are

du  d%b dv  d?c

0=—t-a 0=-—
da? dx

Boundary conditions: u = v = b =c = O onwalls x =

dx L dx?

-1/2.

0,



Momentum equations

Momentum equations with streamwise forcing ' = dp/dx
IBgdbI 1 d _Bgdc 1 d

O:F| | HSC) O
Ldr Ldz "

 Ldr Ldz

Integrate once in I,
0= FLx+ Bb+1l,,, 0= Bjc+Il,..

Sum of forcing plus Maxwell stress plus viscous stress is constant.

Now eliminate

du_ d?b dv_ d?c

de  da?’ dx da?

Reconstruct velocities later from the magnetic field,

db db dc dc
_ v(z) =

ulz)

drlwan  dz’ drlwal dx

| 1L,..



Dimensionless momentum equations

Eliminating « and v and rescaling gives

bde d’c
- C 212 _ 2 dic
Ha’ p) —opd2® __dr* | = O(¢’
¥ (ot b (14 6%+ c?)? ) (1+ b2+ c2)3/2 da? (€);
d?b d?
oo e 2B d
— ZC € — €
e (1+02+c2)? (140> + )% da? |
with parameters
ByL A7 F'L [by 2D r
T ) / B )<
Lorentz / VISCOUS forcing / Lorentz gyro / parallel

Parallel viscosity [t = (2/3)no and gyroviscosity fix = 3.



Numerical solution — streamwise field (b)
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Ha = 10, f = 1 two-point boundary value solver (Cash & Mazzia 2005)



Numerical solution — out of plane field (c)
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Ha = 10, f = 1 two-point boundary value solver (Cash & Mazzia 2005)



Numerical solution — streamwise velocity (u)
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Ha = 10, f = 1 two-point boundary value solver (Cash & Mazzia 2005)



Numerical solution — out of plane velocity (’U)
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Magnetic field in the core
In most of the domain b = O(1) and ¢ = O(e).

Leading order equation for b is

fotb L 200 d%
r+b= .
Ha” (1 + b%)2da?

When Ha >>> 1 the solution is b = — fx outside O(1/Ha)-wide Hartmann

boundary layers at the walls.

Having solved for b, the out-of-plane field ¢ is given by the algebraic relation

fr+b o5 2N1/2
EQbfZE (b° —2) (1 +b%)7~,

which becomes ¢ ~ —¢ /b for |b| < 1.

C =

The assumption ¢ << b breaks down as b — () at the walls.



Hartmann layers (nearwall, € = 0, Ha > 1)

The linear profile b = — fx cannot satisfy b = (0 at the walls x = £1/2.

The viscous stress reappears in O(1/Ha)-wide boundary layers at the walls,
as in standard MHD.

Rescale to bring in the viscous stress near the walls:

0 1 Y fib 20> d%b ) 1 Y
= | —5 | , T=—c+
2 " Ha (1rp22dy2 o 2 " Ha
After dropping the small Y/Ha term, we get an Z-independent ODE.
d?b
V(b)) =0
dY? (b)

for a particle in a potential.

The Maxwell stress plus the viscous stress is spatially uniform in these scalings.



Hartmann layer solutions
Multiply by db/dY" and integrate once

db b’ b*

: 1
(d—Y> =& —-V(b), for V(b) = {b | : Zb}f—[ﬁ—logb—z.

The potential V' has a maximum at b = %f

The outer linear solution b = — fx tends to %f at the left wall.

Matching the Hartmann layer to the outer solution implies b — %f as

Y — 00. We also impose the wall boundary condition b = O at Y = 0.

The implicit solution is

b
v— [ (v -vis)
Exploiting s << 1, !

—1/2

ds.

b ~ %32/3f1/3Y2/3asY — 0.

We satisfy b = 0 at the wall, but the current db/dx becomes infinite.



Hartmann layer matching condition
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Comparison of Hartmann layer solutions

Braginskii MHD
Y - oo

Isotropic MHD
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Numerical solutions versus Hartmann layer solution (b)




Numerical solutions versus Hartmann layer solution (c)
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Inner wall layers

Outer scaling b = O(1) and ¢ ~ —¢/b < b breaks down for b ~ ¢'/?.

1/2

Rescale for b ~ ¢/ and ¢ ~ €'/2 using

1 2

The 63/ . scaling of & balances the gyroviscous terms with the forcing.
d*C d’B

Universal ODE system el 1+ BC, el —C”.

Boundary conditions:
e B=C=0onX =0,

® Matching to the Hartmann layer as X — 00.



Matching conditions

Inside the Hartmann layer

fx+0b
T 20fx

In wall layer variables (van Dyke’s matching rule)

C ~—1/Bas B — o0.

(0> —2)(1 4 )2 ~ —g as b — 0.

putting C' = —1/ B into the universal ODEs gives
d“B 1
dX?  B?
The solution

B(X) _ 32/32—1/3X2/3
coincides with the Hartmann layer solution in the original variables,

b ~ %32/3 f1/3 H42/3 (gj n %)2/3

as t — 0.



Universal inner wall layer solution (numerical)

BOB_ = 32/3 5-1/3 3 2/3

as X —» o
- CDCOO:—llBoo
o 1 2 3 4 5
X
Bx(0)=1.253... COx(0)= —0.886... Cmin= —0.465...




Numerical solutions versus inner wall layer analysis for

B
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Peak velocity scaling

The maximum streamwise velocity is
Upee = 1.253 .. L fY2Hae 1/,

from integrating the dimensionless induction equation

du &b
dz  dz2
to obtain
db db
u(x) =

drlwal  dx

Similarly, the maximum out-of-plane velocity is

Ve = 0.987 ... L2 Hae /2,

Neither result depends upon knowing the detailed solution in the core.
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Universal inner solution for the out-of-plane velocity (V)
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Maximum velocities, theory versus numerical solutions
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Conclusions

Braginskii magnetohydrodynamics describes strongly magnetised plasmas
on lengthscales >> mean free path >> gyroradius.

Three different viscosities: parallel 1 2> gyro (1 > perpendicular (i .

In Hartmann flow the parallel viscous stress vanishes on the walls, so
Braginskii MHD needs regularising, e.g. by gyroviscous stresses

Asymptotic solution contains

e Hartmann layers, thickness ~ Ha ' .

® Inner wall layers, thickness ~ (11, /i) Ha™" ~ (i) =1 Ha .
Regular solution with gyroviscosity alone. No perpendicular viscosity needed.
Peak velocities and peak currents scale as (,ux/,uu)_l/4 ~ (Qm)l/4.

No well-defined limit as £t /1 — 0.

“Planar channel flow in Braginskii magnetohydrodynamics” JFM 667 520

“Lattice Boltzmann formulation for Braginskii MHD” Comput. & Fluids 46 201



