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Introduction      

Electrostatic turbulence is the current paradigm. 

•  As β increases the magnetic field component increases: 

•  Electron transport along stochastic field could get large. 

Could limit achievable β in tokamaks.   

•  Does it?   

•  Is it micro-tearing or EM Ion Temperature Gradient driven 
modes? 

|�B|
B

/ �
e�

T



Rough Estimate of Diffusion      
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Random Step going a correlation length lc along 
the field line. 
 
 
B 
 
 
 
Diffusion of field lines 
 
 
Spatial diffusion of an electron moving at vthe along field 
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ITG with δB 



Field line diffusion – Electron diffusion 

Fraction of passing particles 

Field-line diffusion 

Electron heat diffusion 

Electron thermal velocity 



EM transport 

Electrostatic 
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EM transport 

ITER – βe ~ 5-10%   

�e

�GB

10 

50 

R

lT
? 4 

F (
R

LT
� [

R

LT
]crit)



Micro-tearing 

β  = 9% 
All Electromagnetic 



Micro-tearing 
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Interchange Parity 

Understanding critical levels of flow shear 4
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Figure 1: Geometry of the shearing magnetic field B and background flow V0. Looking
in the −ẑ direction, the field is represented by flux tubes, twisting above and below
the plane of x = 0. Dashed grids are a guide, both ls and Lv are taken to be negative.
(a) Cross sections (red ovals) through a typical eddy at an initial time t = 0. (b) Flux
tubes are advected along y by the perpendicular component of the sheared flow, see
(6). The eddy is thus twisted and its vertical position retreats along the field at speed
uf = V0 (ls/Lv) êv · ŷ.

The component of the equilibrium flow perpendicular to the magnetic field
convects (see figure 1(b)) the magnetic field structure, the guiding centres and the
sound waves. The time dependent transformation

y∗ = y − V0
x

Lv
(êv · ŷ) t (5)

follows the shearing arising from the y (perpendicular) flow component. This type
of transformation was first introduced by Kelvin [20] to analyze instabilities due to
sheared flow in fluids. Combining the two transformations yields the final coordinate
transformation [16]:

t′ = t, z′ = z + uf t, y′ = y −
x

ls
z′, x′ = x, (6)

where we define the velocity:

uf = V0
ls
Lv

êv · ŷ. (7)

Thus we have transformed to a moving frame travelling along the z direction
(essentially the field lines) at velocity −uf . In this frame the combined transformation
is identical to (3) and therefore independent of time. The coordinates yield the
simplifications:

B ·∇x′ = B ·∇y′ = 0, B ·∇ ≡ B0
∂

∂z′
, (8)

∂

∂t
+ V0 · ŷ

∂

∂y
=

∂

∂t′
+ uf

∂

∂z′
. (9)

Note that in the moving frame the plasma flows along the field line at velocity uf .
Perturbations in this system take the form of eddies which are localized in x and

extended along the field line - cross sections through a single eddy (red ovals) are
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Micro-tearing 

Understanding critical levels of flow shear 4
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Figure 1: Geometry of the shearing magnetic field B and background flow V0. Looking
in the −ẑ direction, the field is represented by flux tubes, twisting above and below
the plane of x = 0. Dashed grids are a guide, both ls and Lv are taken to be negative.
(a) Cross sections (red ovals) through a typical eddy at an initial time t = 0. (b) Flux
tubes are advected along y by the perpendicular component of the sheared flow, see
(6). The eddy is thus twisted and its vertical position retreats along the field at speed
uf = V0 (ls/Lv) êv · ŷ.

The component of the equilibrium flow perpendicular to the magnetic field
convects (see figure 1(b)) the magnetic field structure, the guiding centres and the
sound waves. The time dependent transformation

y∗ = y − V0
x

Lv
(êv · ŷ) t (5)

follows the shearing arising from the y (perpendicular) flow component. This type
of transformation was first introduced by Kelvin [20] to analyze instabilities due to
sheared flow in fluids. Combining the two transformations yields the final coordinate
transformation [16]:

t′ = t, z′ = z + uf t, y′ = y −
x

ls
z′, x′ = x, (6)

where we define the velocity:

uf = V0
ls
Lv

êv · ŷ. (7)

Thus we have transformed to a moving frame travelling along the z direction
(essentially the field lines) at velocity −uf . In this frame the combined transformation
is identical to (3) and therefore independent of time. The coordinates yield the
simplifications:
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Perturbations in this system take the form of eddies which are localized in x and

extended along the field line - cross sections through a single eddy (red ovals) are
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“Frozen Field” 
•  Ian Abel has shown that where: 

  (collisional limit) 

                                  and velocity of field lines becomes 

 

 

 

In the slab 

 

Far along field line condition is violated  
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Dissipation Scale 
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Scale at which field slips through plasma. 
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ITG modes (Ion Temperature Gradient) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

•  Fields within ~1-3 poloidal turns 

Microtearing modes (ky=0.12) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

•  ~60 poloidal turns in � (not A||) 
 

Comparison of microinstabilities in ballooning space 

Microtearing modes: intrinsic multiscale features in x-y  
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Field Lines -- steps 
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Field Lines -- steps 
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Interchange ITG 
No step of course 
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Field Lines -- steps 

z 

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

 0

 0.0002

 0.0004

-1500 -1000 -500  0  500  1000  1500

Dissipative scale �k

ΔB 

qk = krkT ⇠ n0
v2the
⌫e

rkT ⇠ n0
v2the
⌫e

�T

�k
⇠ n0

v2the
⌫e

1

�k
�B |rT |



Field Lines -- steps 

Radial heat flux 
From B perturbation:  
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electrostatic:  qr = n0T
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Conclusion 
At betas of interest for efficient fusion we could have large 

Transport… 

•  But perhaps it just makes transport stiffer but critical gradient 

is higher? 

•  Clearly it is not settled. 


