
Stellarator equilibria with non-planar magnetic axis:

The high-beta stellarator expansion

Antoine Cerfon
with Felix Parra and Jeffrey Freidberg

Stellaratorfest at the 4th the Fusion Theory Working Group Meeting

March 13, 2012

1 Formulation

The derivation starts with the form of the MHD equilibrium equations which is more convenient for
stellarator expansions:

−→
∇ ·
−→
B = 0

−→
∇ ×

−→
B = µ0

−→
J

−→
J ⊥ =

(−→
B ×

−→
∇p
)
/B2 (1)

−→
B ·
−→
∇p = 0

−→
∇ ·
−→
J = 0

In our description, a stellarator equilibrium consists of a large toroidal magnetic field, small he-
lical and axisymmetric poloidal magnetic fields, and a small pressure. There are five independent
dimensionless parameters which appear in our analysis:

Inverse aspect ratio ε = a/R0

Normalized helical field amplitude δ =
∣∣∣−→Bp∣∣∣ /Bφ

Normalized plasma pressure β = 2µ0p/B
2
φ (2)

Poloidal periodicity mode number l

Toroidal periodicity mode number N

Here, Bφ is the toroidal field.
−→
Bp is the poloidal magnetic field, which consists of a sum of helical

and axisymmetric harmonics and can be written as follows

−→
Bp (−→r ) =

∑
N,l

−→
Bp

(N,l)(r, lθ +Nφ) (3)

With
−→
Bp written in this form, this axisymmetric component of the poloidal field corresponds N = 0.

For our expansion, we assume that the normalized helical field amplitude is very small: δ � 1. All
the other parameters are ordered with respect to δ, as shown in Table 1 below. For comparison, the
well-known Greene-Johnson ordering is also given in this table.

Note that one of the motivations for the new ordering is that it allows N to be of order unity,
which is necessary to have a non-planar magnetic axis. Indeed, when N is large, the term Bφ

−→eφ ·
−→
∇p

is larger than any other term in the equation
−→
B ·
−→
∇p = 0 and the pressure thus is independent of φ to

lowest order.
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Quantity Non-planar Expansion Greene-Johnson Expansion
ε δ δ2

β δ δ2

N 1 1/δ2

l 1 1

Table 1: Stellarator expansions

To start the derivation of the new expansion, we introduce the normalized coordinate system (x, y, φ),
defined using the traditional (R

′
, φ

′
, Z

′
) cylindrical coordinate system:

R
′

= R0 + ax

Z
′

= ay (4)

φ
′

= −φ/N0

R0 and a are the average major and minor radii of the plasma. N0 is the number of helical
periods in the stellarator and is related to the toroidal periodicity number N by the relation N = nN0,
with n ∼ 1, n integer. Additionally, by normalizing φ by N0, one ensures that one helical period
corresponds to 0 ≤ φ ≤ 2π. Finally, in the new variables, the gradient operator can be written

a
−→
∇

′
= −→ex

∂

∂x
+−→ey

∂

∂y
+−→eφ

εN0

1 + εx

∂

∂φ
(5)

=
−→
∇⊥ +

−→
∇‖ ,

−→
∇⊥ ∼ 1

−→
∇‖ ∼ ε (6)

In eq.(5), we have defined −→ex = −→eR′ , −→ey = −→eZ′ , and −→eφ = −−→eφ′ . Both (R
′
, φ

′
, Z

′
), and (x, y, φ) are

right-handed coordinate systems.

We now introduce the basic expansion of the magnetic field, current density and pressure consistent
with our new ordering.

O(1) O(δ)
−→
B = B0

−→eφ + (Bφ1 − εxB0)−→eφ +
−−→
Bp1

−→
J = Jφ1

−→eφ +
−→
Jp1

p = p1

Bφ1 represents the diamagnetic correction to the toroidal field. The correction −εxB0 to the vacuum
toroidal field is found by writing Bφ = B0R0/R.

With all the quantities of interest introduced, we can plug in our expansion in the MHD equations
given in eq.(1), one after the other.

2 Asymptotic expansion

1. The
−→
∇ ′ ·
−→
B = 0 equation

Only
−−→
Bp1 comes in to lowest order, since B0 is a constant:

−→
∇

′
·
−→
B = 0⇒

−→
∇⊥ ·

−−→
Bp1 = 0 (7)

−→
∇⊥ is a two-dimensional operator, so we can introduce a stream function A1(x, y, φ) to express

−−→
Bp1:

−−→
Bp1
B0

=
−→
∇⊥A1 ×−→eφ (8)
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For the
−→
∇ ′ ·

−→
B = 0 equation to give information about Bφ, we would need to go up to second

order. This is not necessary in our analysis, as we will later see. Thus, for the moment, we keep the
following form for the total field:

−→
B

B0
=
(

1− εx+
Bφ1

B0

)
−→eφ +

−→
∇⊥A1 ×−→eφ (9)

2. The µ0
−→
J =

−→
∇ ′ ×

−→
B equation

We start by rewriting this equation as

µ0a
−→
J

B0
=

1
B0

(−→
∇⊥ ×

−→
B +

−→
∇‖ ×

−→
B
)

(10)

Since the parallel gradient is down by ε ∼ δ, only the part due to B0
−→eφ will contribute to lowest order.

Using the fact that

∂−→eφ
∂φ

= −
−→ex
N0

we immediately obtain
−→
∇‖ ×

−→
B

B0
≈ −ε−→ey (11)

to lowest order.
Furthermore, using eq.(9), one finds that to lowest order

−→
∇⊥ ×

−→
B

B0
= ε−→ey −−→eφ ×

−→
∇⊥

Bφ1

B0
−−→eφ

−→
∇2
⊥A1 (12)

Combining eqs.(11) and (12), one finally obtains the expression for the current density to lowest
order:

µ0a
−→
J1

B0
= −−→eφ ×

−→
∇⊥

Bφ1

B0
−−→eφ

−→
∇2
⊥A1 (13)

3. The
−→
J⊥ = (

−→
B ×

−→
∇ ′
p)/B2 equation

To lowest order, only the vacuum magnetic field contributes to this equation, since p is a first-order
quantity. Thus we have

µ0a
−→
Jp1

B0
=

1
2
−→eφ ×

−→
∇⊥β1 (14)

where β1 = 2µ0p1/B
2
0 .

After identifying the poloidal current density in eq.(13), eq.(14) leads to the equality

−→
∇⊥

(
β1

2
+
Bφ1

B0

)
= 0 (15)

The solution to this equation consistent with the boundary condition that the pressure vanishes at
the plasma edge is:

Bφ1

B0
= −β1

2
(16)

Eq.(16) is the usual θ-pinch pressure balance relation.
We have now expressed the fields in terms of the two scalar quantities A1 and β1:
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−→
B

B0
=
(

1− εx− β1

2

)
−→eφ +

−→
∇⊥A1 ×−→eφ

(17)

µ0a
−→
J1

B0
=

1
2
−→eφ ×

−→
∇⊥β1 −−→eφ

−→
∇2
⊥A1

In the last steps of the calculations, we derive the equations which determine A1 and β1.

4. The
−→
B ·
−→
∇ ′
p = 0 equation

To lowest order, this means that
−→
B0 ·
−→
∇‖p1 +

−−→
Bp1 ·

−→
∇⊥p1 = 0. Substituting the expression derived

previously for
−−→
Bp1 and dividing through by B3

0/2µ0, this becomes(
εN0

∂

∂φ
−−→eφ ×

−→
∇⊥A1 ·

−→
∇⊥

)
β1 = 0 (18)

This is a first relation between A1 and β1. We need a second one to close the system, which is
obtained with the

−→
∇ ′ ·
−→
J = 0 equation.

5. The
−→
∇ ′ ·
−→
J = 0 equation

We separate this equation in two parts, by writing

−→
B ·
−→
∇
(
J‖

B

)
+
−→
∇ ·
−→
J ⊥ = 0 (19)

To lowest order, J‖/B = Jφ1/B0. Thus, as with the pressure equation in Section 4, the first term
on the left-hand side of eq. (19) is, to lowest order,

−→
B ·
−→
∇
(
J‖

B

)
≈
(
εN0

∂

∂φ
−−→eφ ×

−→
∇⊥A1 ·

−→
∇⊥

)
Jφ1 (20)

Using the expression for Jφ1 in eq.(17), this can be rewritten as:

−→
B ·
−→
∇
(
J‖

B

)
≈ − B0

µ0a

(
εN0

∂

∂φ
−−→eφ ×

−→
∇⊥A1 ·

−→
∇⊥

)
−→
∇2
⊥A1 (21)

For the second term on the left-hand side of eq.(19), we use the pressure balance equation:

−→
∇ ·
−→
J ⊥ =

1
a

−→
∇ ·

(−→
B ×

−→
∇p

B2

)
=

1
aB2

[
−→
∇ ·

(−→
B ×

−→
∇p
)

+
−→
∇p×

−→
B ·
−→
∇B2

B2

]
(22)

The first term in the square brackets vanishes because
−→
J ·
−→
∇p = 0 and

−→
∇ ×

−→
∇p =

−→
0 . Thus,

−→
∇ ·
−→
J ⊥ =

−→
∇p×

−→
B ·
−→
∇B2

aB4
(23)

From the MHD equilibrium momentum equation (
−→
∇ ×

−→
B )×

−→
B = µ0

−→
∇p, we know that we have

−→
B ·
−→
∇B
−→
b +B2−→κ − µ0

−→
∇p =

−→
∇B2

2
(24)

with
−→
b =

−→
B/B, and −→κ =

−→
b ·
−→
∇
−→
b . Taking the dot product of this equation with

−→
∇p×

−→
B , we find

2
−→
∇p×

−→
B · −→κ =

−→
∇p×

−→
B ·
−→
∇B2

B2
(25)
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so that eq. (23) becomes
−→
∇ ·
−→
J ⊥ = 2

−→
∇p×

−→
B · −→κ

aB2
(26)

To lowest order, the curvature is that of the vacuum toroidal field:

−→κ
′
≈ − 1

R0

−→eR′ ⇒ −→κ ≈ −ε−→ex (27)

Thus, to lowest order, we have

−→
∇ ·
−→
J ⊥1 = −2ε

−→
∇p1 · −→ey
aB0

(28)

Collecting all the pieces, the
−→
∇ ′ ·
−→
J = 0 equation can thus be rewritten as:(

εN0
∂

∂φ
−−→eφ ×

−→
∇⊥A1 ·

−→
∇⊥

)
−→
∇2
⊥A1 = −ε

−→
∇β1 · −→ey (29)

6. Summary

The basic model describing the new stellarator expansion is given by two partial differential equa-
tions for the two scalar quantities A1 and β1, eq. (18) and eq.(29), repeated here for convenience(

εN0
∂

∂φ
−−→eφ ×

−→
∇⊥A1 ·

−→
∇⊥

)
β1 = 0 (30)(

εN0
∂

∂φ
−−→eφ ×

−→
∇⊥A1 ·

−→
∇⊥

)
−→
∇2
⊥A1 = −ε

−→
∇β1 · −→ey (31)

We renormalize the two unknowns A1 and β1 as

A = − A1

εN0
∼ 1 β =

β1

εN2
0

(32)

so that eqs.(30) and (31) can be rewritten in terms of A and β in an even more concise form:

(
∂

∂φ
+−→eφ ×

−→
∇⊥A ·

−→
∇⊥

)
β = 0

(33)(
∂

∂φ
+−→eφ ×

−→
∇⊥A ·

−→
∇⊥

)
−→
∇2
⊥A = −→ey ·

−→
∇⊥β

Once the coupled equations in eq.(33) are solved for A and β, we immediately know A1 and β1.
The magnetic field and current density are then readily calculated from eq.(17), which we repeat here:

−→
B

B0
=
(

1− εx− β1

2

)
−→eφ +

−→
∇⊥A1 ×−→eφ

(34)

µ0a
−→
J1

B0
=

1
2
−→eφ ×

−→
∇⊥β1 −−→eφ

−→
∇2
⊥A1

The stellarator equilibrium is then fully determined.
The numerical methods which we use to solve eq.(33) for either the fixed boundary problem or the

free boundary problem will be the topic of another writeup.
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