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GRAD-SHAFRANOV EQUATION AS POISSON’S

EQUATION
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Ψ = Cst on plasma boundary
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I The left-hand side is the 2-D Laplacian
I We want the first and second derivatives of U with very good

accuracy⇒ Spectral methods



FAST POISSON SOLVER ON A CIRCLE

∆u(ρ, θ) = f (ρ, θ)
u(a, θ) = g(θ)

I Write data and solution as Fourier series (use FFT)

u(ρ, θ) =
∑

ûn(ρ)einθ , f (ρ, θ) =
∑

f̂n(ρ)einθ , g(θ) =
∑

ĝneinθ

I Plugging into Poisson’s equation, we get mode-by-mode ODE

û′′n(ρ) +
1
ρ

û′n(ρ)− n2

ρ2 ûn(ρ) = f̂n(ρ)

ûn(a) = ĝn



FAST POISSON SOLVER ON A CIRCLE

I Using Green’s functions to construct particular solution (that
does not satisfy B.C.)

ûpart
n (ρ) =
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∫ ∞
ρ
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]

I Piecewise Chebyshev/Legendre grid crucial for high order
I To match the B.C., add homogeneous correction:

ûn(ρ) = ûhom
n (ρ) + ûpart

n (ρ) with ûhom
n (ρ) = cn

(ρ
a

)n

I Boundary condition yields explicit condition cn = ĝn − ûpart
n

I Major advantage of Green’s function method: differentiation



CONFORMAL MAPPING

∆u(x, y) = f (x, y) → ∆v(α, β) = f (X(α, β),Y(α, β)) ·
∣∣∣∣dZ
dw

∣∣∣∣2
u|∂Ω = g(x, y) → v|∂Ω = g(X(α, β),Y(α, β))

I W computed with the Kerzman-Stein integral equation
I Problem with crowding for large aspect ratio



CONFORMAL MAPPING
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CONFORMAL MAPPING

ITER crowding factor: 5

NSTX crowding factor: 20



ITER – RESULTS
Numerical solution

Exact solution

ε = 0.32, κ = 1.7, δ = 0.33



ITER – CONVERGENCE
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Convergence of Grad−Shafranov solver for Soloviev solution
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I Exponential convergence – solution almost to machine accuracy
I Good accuracy for derivatives (error due to numerical derivative

of boundary conditions)



NSTX – RESULTS



NSTX – CONVERGENCE

Results are not as good
for STs

Due to:

I Oversampling of 3 compared to ITER
I Domain boundary requires slightly more points to be resolved


