MHD equilibrium calculations for stellarators

Antoine Cerfon, MIT PSFC with F. Parra, J. Freidberg (MIT NSE)

MAGNETIC FIELD LINE HAMILTONIAN

- ► Consider a general toroidal coordinate system (r, θ, ϕ) θ poloidal angle, ϕ toroidal angle
- ▶ Using the gauge freedom for the vector potential \overrightarrow{A} , it is always possible to construct Ψ and χ such that

$$\overrightarrow{B} = \overrightarrow{\nabla}\phi \times \overrightarrow{\nabla}\Psi + \overrightarrow{\nabla}\chi \times \overrightarrow{\nabla}\theta$$

 Ψ and χ not necessarily poloidal and toroidal flux

▶ In (χ, θ, ϕ) coordinates, the field line trajectories are given by

$$\frac{d\chi}{d\phi} = -\frac{\partial\Psi}{\partial\theta}$$
$$\frac{d\theta}{d\theta} = \frac{\partial\Psi}{\partial\theta}$$

Hamilton's equations with
$$H \leftrightarrow \Psi$$
, $x \leftrightarrow \theta$ and $p \leftrightarrow \chi$

The "time" ϕ is periodic, so this is a "1.5 degree of freedom Hamiltonian"

FUNDAMENTAL COMPLICATIONS IN 3D

Pendulum

Energy conserved

Energy not conserved

Magnetic field surfaces

Axisymmetry

No Symmetry

THE WORK HORSE: VMEC (1)

- ► Based on an idea by Kruskal & Kulsrud; Numerical scheme first proposed by F. Bauer, O. Betancourt, and P. Garabedian; Implemented and developed as VMEC by S. Hirschman et al.
- ▶ Minimization of the plasma potential energy

$$E = \int_{\Omega} \left(\frac{B^2}{2\mu_0} + \frac{\rho^{\gamma}}{\gamma - 1} \right) dV = E_B + E_{int}$$

▶ Only allowed virtual displacements $\overrightarrow{\xi}$ satisfy

$$\delta \rho = -\overrightarrow{\nabla} \cdot \rho \overrightarrow{\xi}$$
 $\delta \overrightarrow{B} = \overrightarrow{\nabla} \times (\overrightarrow{\xi} \times \overrightarrow{B})$

 \Rightarrow Assuming there is a nested family of flux surfaces s = cst, define

$$\iint_{S \leq s_0} \overrightarrow{B} \cdot \overrightarrow{dS} = F_T(s_0) \quad \iint_{S \leq s_0} \overrightarrow{B} \cdot \overrightarrow{dS} = F_P(s_0) \quad \iiint_{S \leq s_0} \rho d^3x = M(s_0)$$

 F_T , F_P and M are given functions of s, held fixed during variation

THE WORK HORSE: VMEC (2)

Turn constrained minimization into unconstrained minimization:

► Flux and solenoidal constraints incorporated by writing

$$\overrightarrow{B} = \overrightarrow{\nabla} s \times \overrightarrow{\nabla} G$$
 with $G = -F'_T(s)u + F'_P(s)v + \lambda(s, u, v)$ and with $\lambda(s, u, v)$ a periodic function of u and v

► Mass constraint obtained from Hölder's inequality

$$M(s) = \iiint \rho \frac{ds dv du}{\mathcal{J}} \; , \; \; M'(s) \equiv m(s) = \iint \frac{\rho}{\mathcal{J}} dv du \; , \; \mathcal{J} = \frac{\partial(s,u,v)}{\partial(x,y,z)}$$

$$m(s) = \iint \frac{\rho}{\mathcal{J}^{\frac{1}{\gamma}}} \frac{1}{\mathcal{J}^{\frac{\gamma-1}{\gamma}}} dv du \leq \left(\iint \frac{\rho^{\gamma}}{\mathcal{J}} dv du \right)^{\frac{1}{\gamma}} \left(\iint \frac{dv du}{\mathcal{J}} \right)^{\frac{\gamma-1}{\gamma}}$$

Minimum of E_{int} when $\rho = \rho(s) = m(s)/(\iint du dv/\mathcal{J}) \Rightarrow p = p(s)$

THE WORK HORSE: VMEC (3)

Choose v s.t. $v = \phi$, ϕ usual toroidal angle

$$E = \iiint \frac{D_1^2 + D_2^2 + D_3^2}{2\mu_0} \frac{dsdvdu}{D} + \frac{1}{\gamma - 1} \int \frac{m(s)^{\gamma}}{\left(\iint Ddvdu\right)^{\gamma - 1}} ds$$
$$D \equiv \frac{\partial(R, Z)}{\partial(s, u)} , D_1 \equiv \frac{\partial(\psi, R)}{\partial(u, v)} , D_2 \equiv R\psi_u , D_3 \equiv \frac{\partial(\psi, Z)}{\partial(u, v)}$$

Write

$$R = \sum_{mn} R_{mn}(s)\cos(mu + nv)$$
$$Z = \sum_{mn} Z_{mn}(s)\cos(mu + nv)$$

Find R_{mn} and Z_{mn} corresponding to minimum of E using the Steepest Descent Method

SIESTA can be used in conjunction with VMEC to compute equilibria with islands

A DIRECT SOLVER WITH ISLANDS: PIES

► Solves the MHD equilibrium equations iteratively

1.
$$\overrightarrow{B} \cdot \overrightarrow{\nabla} p = 0$$

2. $\overrightarrow{J_{\perp}} = \frac{\overrightarrow{B} \times \overrightarrow{\nabla} p}{B^2}$
3. $\overrightarrow{B} \cdot \overrightarrow{\nabla} \left(\frac{J_{\parallel}}{B} \right) = -\overrightarrow{\nabla} \cdot \overrightarrow{J_{\perp}}$
4. $\overrightarrow{\nabla} \times \overrightarrow{B} = \overrightarrow{J}$

- ► Eq.(1) is used to compute magnetic coordinates

 This step is where most of the action is complications with rational surfaces, stochasticity...
- ► Eq.(2)-(3) are then solved analytically, mode by mode, in magnetic coordinates
- ► Eq.(4) is then solved for the updated magnetic field, in lab (toroidal) coordinates

ASYMPTOTIC APPROACHES: GREENE-JOHNSON (1961)

Assumes strong toroidal guide field B_0 Expansion based on the small parameter $\delta \equiv B_{hel}/B_0 \ll 1$

Parameter	Symbol	Scaling
Beta	$\beta \sim \beta_t$	δ^2
Inverse aspect ratio	$a/R_0 \equiv \epsilon$	δ^2
Number of helical periods	N_0	$1/\delta^2$
Poloidal helicity	1	1
Rotational transform	$\iota/2\pi$	1

NOTE: $\beta \sim \epsilon$

Consequences of the G-J ordering

$$R' = R_0 + a\rho\cos\theta$$

$$Z' = a\rho\sin\theta$$

$$\phi' = -\frac{\phi}{N_0}$$

$$\begin{split} a\overrightarrow{\nabla}' &\equiv \overrightarrow{\nabla} = \overrightarrow{\nabla}_{\perp} + \overrightarrow{\nabla}_{\parallel} \\ \overrightarrow{\nabla}_{\perp} &= \frac{\partial}{\partial\rho}\overrightarrow{e_{\rho}} + \overrightarrow{e_{\theta}}\frac{1}{\rho}\frac{\partial}{\partial\theta} \sim 1 \\ \overrightarrow{\nabla}_{\parallel} &= \overrightarrow{e_{\phi}}\frac{\epsilon N_{0}}{1 + \epsilon\rho cos\theta}\frac{\partial}{\partial\phi} \sim 1 \end{split}$$

To lowest order,
$$\overrightarrow{B} \cdot \overrightarrow{\nabla} \psi = 0 \quad \Rightarrow \quad \epsilon N_0 B_0 \frac{\partial \psi}{\partial \phi} = 0 \quad \Rightarrow \quad \psi = \psi(\rho, \theta)$$

Greene-Johnson stellarators are perturbed tokamaks!

A NEW ORDERING

Same expansion parameter as Greene-Johnson: $\delta \equiv B_{hel}/B_0 \ll 1$

Parameter	Symbol	G-J Scaling	New scaling
Beta	$\beta \sim \beta_t$	δ^2	δ
Inverse aspect ratio	ϵ	δ^2	δ
Number of helical periods	N_0	$1/\delta^2$	1
Poloidal helicity	1	1	1
Rotational transform	$\iota/2\pi$	1	1

NOTE: In both expansions, $\beta \sim \epsilon$

CONSEQUENCE OF THE NEW ORDERING

To lowest order,
$$\overrightarrow{B} \cdot \overrightarrow{\nabla} \psi = 0 \Rightarrow \left(\epsilon N_0 B_0 \frac{\partial}{\partial \phi} + \overrightarrow{B_p} \cdot \overrightarrow{\nabla}_{\perp} \right) \psi = 0$$

Equilibria can have a non-planar magnetic axis

Our expansion:

$$\begin{array}{ccc} O(1) & O(\delta) \\ \overrightarrow{B} = & B_0 \overrightarrow{e_\phi} & + \left(B_{\phi 1} - \epsilon x B_0\right) \overrightarrow{e_\phi} + \overrightarrow{B_{p 1}} \\ \overrightarrow{J} = & J_{\phi 1} \overrightarrow{e_\phi} + \overrightarrow{J_{p 1}} \\ p = & p_1(\rho, \theta, \phi) \end{array}$$

Greene-Johnson expansion:

$$\overrightarrow{B} = B_0 \overrightarrow{e_{\phi}} + \overrightarrow{B_1}(\rho, \theta, \phi) + (B_{\phi 2} - \epsilon x B_0) \overrightarrow{e_{\phi}} + \overrightarrow{B_{p2}} + \overrightarrow{B_3}(\rho, \theta, \phi)$$

$$\overrightarrow{J} = \overrightarrow{J_2}(\rho, \theta) + \overrightarrow{J_3}(\rho, \theta, \phi)$$

$$p = p_2(\rho, \theta) + p_3(\rho, \theta, \phi)$$

THE NEW EXPANSION (1)

► The $\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$ equation To lowest order, this is $\overrightarrow{\nabla}_{\perp} \cdot \overrightarrow{B_{p1}} = 0$. Introduce $A_1(\rho, \theta, \phi)$ s.t.

$$\frac{\overrightarrow{B}}{B_0} = \left(1 - \epsilon x + \frac{B_{\phi 1}}{B_0}\right) \overrightarrow{e_{\phi}} + \overrightarrow{\nabla}_{\perp} A_1 \times \overrightarrow{e_{\phi}}$$

► The $\mu_0 \overrightarrow{J} = \overrightarrow{\nabla} \times \overrightarrow{B}$ equation

$$\frac{\mu_0 a \overrightarrow{J_1}}{B_0} = -\overrightarrow{e_\phi} \times \overrightarrow{\nabla}_\perp \frac{B_{\phi 1}}{B_0} - \overrightarrow{e_\phi} \overrightarrow{\nabla}_\perp^2 A_1$$

▶ The $\overrightarrow{J_{\perp}} = (\overrightarrow{B} \times \overrightarrow{\nabla} p)/B^2$ equation

$$\overrightarrow{\nabla}_{\perp} \left(\frac{\beta_1}{2} + \frac{B_{\phi 1}}{B_0} \right) = 0 \Rightarrow \frac{B_{\phi 1}}{B_0} = -\frac{\beta_1}{2} \qquad \beta_1 = \frac{2\mu_0 p_1}{B_0^2}$$

 θ -pinch pressure balance relation

THE NEW EXPANSION (2)

▶ The $\overrightarrow{B} \cdot \overrightarrow{\nabla} p = 0$ equation

$$\left(\epsilon N_0 \frac{\partial}{\partial \phi} - \overrightarrow{e_\phi} \times \overrightarrow{\nabla}_{\perp} A_1 \cdot \overrightarrow{\nabla}_{\perp}\right) \beta_1 = 0$$

► The $\overrightarrow{\nabla} \cdot \overrightarrow{J} = 0$ equation

$$\left(\epsilon N_0 \frac{\partial}{\partial \phi} - \overrightarrow{e_\phi} \times \overrightarrow{\nabla}_\perp A_1 \cdot \overrightarrow{\nabla}_\perp\right) \overrightarrow{\nabla}_\perp^2 A_1 = -\epsilon \overrightarrow{e_Z} \cdot \overrightarrow{\nabla} \beta_1$$

$$\begin{split} &\left(\frac{\partial}{\partial \phi} + \overrightarrow{e_{\phi}} \times \overrightarrow{\nabla}_{\perp} A \cdot \overrightarrow{\nabla}_{\perp}\right) \beta = 0 \\ &\left(\frac{\partial}{\partial \phi} + \overrightarrow{e_{\phi}} \times \overrightarrow{\nabla}_{\perp} A \cdot \overrightarrow{\nabla}_{\perp}\right) \overrightarrow{\nabla}_{\perp}^{2} A = \overrightarrow{e_{Z}} \cdot \overrightarrow{\nabla} \beta \\ &A = -\frac{A_{1}}{\epsilon N_{0}} \qquad \beta = \frac{1}{\epsilon N_{0}^{2}} \frac{2\mu_{0} p_{1}}{B_{0}^{2}} = \frac{\beta_{1}}{\epsilon N_{0}^{2}} \end{split}$$

THE NEW EXPANSION: RESULTS

$$\left(\frac{\partial}{\partial \phi} + \overrightarrow{e_{\phi}} \times \overrightarrow{\nabla}_{\perp} A \cdot \overrightarrow{\nabla}_{\perp}\right) \beta = 0$$

$$\left(\frac{\partial}{\partial \phi} + \overrightarrow{e_{\phi}} \times \overrightarrow{\nabla}_{\perp} A \cdot \overrightarrow{\nabla}_{\perp}\right) J_{\phi} = \overrightarrow{e_{Z}} \cdot \overrightarrow{\nabla} \beta$$

$$\overrightarrow{\nabla}_{\perp}^{2} A = J_{\phi}$$

$$A = -\frac{A_1}{\epsilon N_0} \qquad \beta = \frac{1}{\epsilon N_0^2} \frac{2\mu_0 p_1}{B_0^2} = \frac{\beta_1}{\epsilon N_0^2} \qquad J_\phi = \frac{\mu_0 a J_{1\phi}}{\epsilon N_0 B_0}$$

$$\frac{\overrightarrow{B}}{B_0} = \left(1 - \epsilon x - \frac{\beta_1}{2}\right) \overrightarrow{e_\phi} + \overrightarrow{\nabla}_\perp A_1 \times \overrightarrow{e_\phi} \qquad \frac{\mu_0 a \overrightarrow{J_1}}{B_0} = \frac{1}{2} \overrightarrow{e_\phi} \times \overrightarrow{\nabla}_\perp \beta_1 - \overrightarrow{e_\phi} \overrightarrow{\nabla}_\perp^2 A_1$$

- ► Equations agree with the Greene-Johnson expansion in the right limit
- ► Equations are in a convenient form for iterations

ITERATION STEPS

Start with given $A^{(0)}$

 $\quad for \ k=1,2,\dots$

$$\begin{split} \left(\frac{\partial}{\partial \phi} + \overrightarrow{e_{\phi}} \times \overrightarrow{\nabla}_{\perp} A^{(k-1)} \cdot \overrightarrow{\nabla}_{\perp}\right) \beta^{(k)} &= 0 \\ \left(\frac{\partial}{\partial \phi} + \overrightarrow{e_{\phi}} \times \overrightarrow{\nabla}_{\perp} A^{(k-1)} \cdot \overrightarrow{\nabla}_{\perp}\right) J_{\phi}^{(k)} &= \overrightarrow{e_{Z}} \cdot \overrightarrow{\nabla} \beta^{(k)} \\ \overrightarrow{\nabla}_{\perp}^{2} A^{(k)} &= J_{\phi}^{(k)} \end{split}$$

until a stopping criterion holds

HYPERBOLIC EQUATIONS AND INITIAL CONDITIONS

$$\left(\frac{\partial}{\partial \phi} + \overrightarrow{e_{\phi}} \times \overrightarrow{\nabla}_{\perp} A \cdot \overrightarrow{\nabla}_{\perp}\right) \beta = 0$$

▶ How to choose the I.C. at $\phi = 0$ such that β is periodic in ϕ ?

DICK AND JANE CALCULATE 3D EQUILIBRIA

$$\left(\frac{\partial}{\partial \phi} + \overrightarrow{e_{\phi}} \times \overrightarrow{\nabla}_{\perp} A \cdot \overrightarrow{\nabla}_{\perp}\right) \beta = 0$$

► Given *A*, the field line trajectories are given by the characteristics:

$$\begin{cases} \frac{d\rho}{d\phi} = -\frac{1}{\rho} \frac{\partial A}{\partial \theta} \\ \frac{d\theta}{d\phi} = \frac{1}{\rho} \frac{\partial A}{\partial \rho} \end{cases}$$

- ► Given a starting point $(\rho_0, \theta_0, \phi_0)$, we can easily integrate these equations $\Rightarrow \rho(\phi)$, $\theta(\phi)$
- ► Integrate for many turns (very large ϕ) to sample the whole magnetic surface
- ▶ If starting point is always of the form $(\rho_0, 0, 0)$, ρ_0 is a unique label for each magnetic surface

EXTRACTING INFORMATION FROM CHARACTERISTICS

Through this process, we have

$$\begin{split} \rho &= \rho(\rho_0,\theta,\phi) \\ \overrightarrow{e_Z} \cdot \overrightarrow{\nabla}_{\perp} \beta &= \frac{d\beta}{d\rho_0} \left(\frac{\partial \rho}{\partial \rho_0} \right)^{-1} \left[\sin\!\theta - \frac{\cos\!\theta}{\rho} \frac{\partial \rho}{\partial \theta} \right] \end{split}$$

CLOSING THE ITERATION LOOP

$$\left(\frac{\partial}{\partial \phi} + \overrightarrow{e_{\phi}} \times \overrightarrow{\nabla}_{\perp} A \cdot \overrightarrow{\nabla}_{\perp}\right) J_{\phi} = \overrightarrow{e_{Z}} \cdot \overrightarrow{\nabla} \beta$$

- ▶ We already know the characteristics for this equation, and the RHS of this equation on the characteristics \Rightarrow Solving for J_{ϕ} is a straightforward 1D (Lagrangian) integral
- ► We can then evaluate $\partial A/\partial \rho$ and $\partial A/\partial \theta$ required for the next iteration:

$$\frac{\partial A}{\partial \rho}(\rho, \theta, \phi) = \frac{1}{2\pi} \iint d\rho' d\theta' \rho' \left[\frac{\rho - \rho' \cos(\theta - \theta')}{\rho^2 + \rho'^2 - 2\rho\rho' \cos(\theta - \theta')} \right] J_{\phi}(\rho', \theta', \phi)$$

$$\frac{\partial A}{\partial \theta}(\rho, \theta, \phi) = \frac{1}{2\pi} \iint d\rho' d\theta' \frac{\rho\rho'^2 \cos(\theta - \theta')}{\rho^2 + \rho'^2 - 2\rho\rho' \cos(\theta - \theta')} J_{\phi}(\rho', \theta', \phi)$$

Preliminary results – Last Issue?

Start with vacuum field (in this case, dominant $\, l=2$ component, some $\, l=3$ and $\, l=4$)

$$\beta(\rho_0) = 0.01(1 - \rho_0^2)^2$$

Preliminary results – Last Issue?

Flux surfaces after 1st iteration

Need to calculate the new location of the magnetic axis to evaluate new β profile; is there a fast numerical scheme to do that?

REFERENCES

<u>Variational methods</u>
 M.D. Kruskal and R.M. Kulsrud, *Phys. Fluids* 1 265 (1958)

F. Bauer, O. Betancourt and Paul Garabedian in *A Computational Method in Plasma Physics* (Springer-Verlag, New York, 1978)

S. P. Hirshman and J. C. Whitson, *Phys. Fluids* **26**, 3553 (1983)

S. P. Hirschman, R. Sanchez, and C.R. Cook, *Phys. Plasmas* **18**, 062504 (2011)

► PIES

A.H. Reiman, H.S. Greenside, Comput. Phys. Commun. 43, 157 (1986)

A.H. Reiman, H.S. Greenside, J. Comput. Phys. 75 423 (1988)

