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MAGNETIC FIELD LINE HAMILTONIAN

» Consider a general toroidal coordinate system (7,6, ¢)
6 poloidal angle, ¢ toroidal angle

—_
» Using the gauge freedom for the vector potential A, it is always
possible to construct ¥ and x such that

— — — — —
B=Véx VU +Vyx Vo

U and x not necessarily poloidal and toroidal flux

» In (x, 0, ¢) coordinates, the field line trajectories are given by

Hamilton’s equations with

ZZ__?;Z HeoU,x—f0andp < x
g ov

u _ 9% The “time” ¢ is periodic, so this is a
dp  Ox “1.5 degree of freedom Hamiltonian”



FUNDAMENTAL COMPLICATIONS IN 3D

Pendulum

Energy conserved

Energy not conserved
Magnetic field surfaces
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THE WORK HORSE: VMEC (1)

» Based on an idea by Kruskal & Kulsrud; Numerical scheme first
proposed by E. Bauer, O. Betancourt, and P. Garabedian;
Implemented and developed as VMEC by S. Hirschman et al.

» Minimization of the plasma potential energy

B2 v
E:/<+ P >dV:EB+E1~m
a\2m -1

» Only allowed virtual displacements ? satisfy

- — — — - =
dp=—-V-p¢& 0B =V x (£ xB)

= Assuming there is a nested family of flux surfaces s = cst, define

//sgso B -dS = Fr(so) //SSSO B .dS = Fp(so) ///s§50 pd®x = M(so)

Fr, Fp and M are given functions of s, held fixed during variation



THE WORK HORSE: VMEC (2)
Turn constrained minimization into unconstrained minimization:

» Flux and solenoidal constraints incorporated by writing

- = —
B = Vs x VG with G = —F;(s)u + Fp(s)v + A(s,u,v)

and with (s, u,v) a periodic function of u and v

» Mass constraint obtained from Hoélder’s inequality

/// dsdvdu’ 4 //jdvdu j_m
://jpi;fd”dw<//§dvdu>i<//dz;lu>%1

Minimum of E;,; when p = p(s) = m(s)/([[ dudv/J) = p = p(s)




THE WORK HORSE: VMEC (3)

Choose v s.t. v = ¢, ¢ usual toroidal angle

/// D% + D3 + D3 dsdvdu 1 / m(s)"
E= + —ds
2p0 D =1 (f Ddvdu)”

I(R,Z) (¥, R) _ _ 0, Z)
d(s, u) o(u,v) ’ D2 =Ry, Ds = d(u,v)

D=

7D15

Write

R = ZRmns s(mu + nov)
Z = szns s(mu + no)

Find R, and Z;,;; corresponding to minimum of E using the Steepest
Descent Method

SIESTA can be used in conjunction with VMEC to compute equilibria
with islands



A DIRECT SOLVER WITH ISLANDS: PIES

» Solves the MHD equilibrium equations iteratively
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» Eq.(1) is used to compute magnetic coordinates
This step is where most of the action is — complications with
rational surfaces, stochasticity. ..

» Eq.(2)-(3) are then solved analytically, mode by mode, in
magnetic coordinates

» Eq.(4) is then solved for the updated magnetic field, in lab
(toroidal) coordinates



ASYMPTOTIC APPROACHES: GREENE-JOHNSON

(1961)

ATF

Assumes strong toroidal guide field By
Expansion based on the small parameter § = By,;/By < 1

LHD

Parameter Symbol | Scaling
Beta G~ B 52
Inverse aspect ratio a/Rop=¢ 8
Number of helical periods No 1/62
Poloidal helicity l 1
Rotational transform /2w 1

NOTE: 3 ~ ¢



CONSEQUENCES OF THE G-] ORDERING

R =R+ apcost

z !
Z = apsinf
¢
¢ = No
¢ ap
0
i ! R
! Ro) !

-, = = —
aV EV:VL%—V”
= — 0——— ~ 1
Vi 8p€p+€p80
N,
N

1+ €pcost 8d>
To lowest order, B - 6)1/1 =0 = eNoBog—‘qf =0 = Y=19(p,0)

Greene-Johnson stellarators are perturbed tokamaks!



A NEW ORDERING

W7-X HSX NCSX

Same expansion parameter as Greene-Johnson: § = By,;/By < 1

Parameter Symbol | G-J Scaling | New scaling
Beta G~ B 52 0
Inverse aspect ratio € 5 o
Number of helical periods No 1/62 1
Poloidal helicity l 1 1
Rotational transform /2w 1 1

NOTE: In both expansions, 3 ~ €
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CONSEQUENCE OF THE NEW ORDERING

— = P — =
To lowest order, B - Vi) = 0 = (eNoBO% +B,- VL) b =0

Equilibria can have a non-planar magnetic axis

Our expansion:

o)

= Bo€¢

<~ —| =]

Greene-Johnson expansion:

O(1) 0(9)
= Boe, +Bi(p.0,9)

~ —| )
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THE NEW EXPANSION (1)

» The V B =0 equation
— —
To lowest order, thisis V | - B,; = 0. Introduce A1(p, 0, ¢) s.t.

-
B B
— = 1—6X+£ Z;—i—?LAle;
Bo Bo
— - -
» The ;o ] = V x B equation
I B
—
peh g% 5 g9 a,
By By
— - = .
» The ], = (B x Vp)/B? equation
v, (P Bay g Ba_ A _ 21
VL<2+BO>_O:>BO_ , A= B2

f-pinch pressure balance relation



THE NEW EXPANSION (2)
> The B - ?p = 0 equation

0 - = —
<6N08¢—€¢XVJ_A1’VJ_>,31—O

- —
» The V - | =0 equation




THE NEW EXPANSION: RESULTS
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» Equations agree with the Greene-Johnson expansion in the right limit
» Equations are in a convenient form for iterations
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ITERATION STEPS

Start with given A®)

fork=1,2,...

until a stopping criterion holds



HYPERBOLIC EQUATIONS AND INITIAL CONDITIONS

0 - = —
<a¢+e¢XVJ_A'VJ_>ﬁ—O

1\

» How to choose the I.C. at ¢ = 0 such that 3 is periodic in ¢?



DICK AND JANE CALCULATE 3D EQUILIBRIA
0 - = —
%+€¢XVLA'VL BZO

» Given A, the field line trajectories are given by the characteristics:

dp _ _10A
dp —  p o0
do _ 10A
d¢ — p Op

» Given a starting point (po, 6o, ¢o), we can easily integrate these
equations = p(¢), 0(¢)

» Integrate for many turns (very large ¢) to sample the whole
magnetic surface

» If starting point is always of the form (po, 0, 0), pp is a unique
label for each magnetic surface



EXTRACTING INFORMATION FROM CHARACTERISTICS

; R I % \ 3
Through this process, we have
p = p(po, 0, ¢)
ez $Lﬁ =

ag ( op .
~ dpy <3PO> [Sm
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CLOSING THE ITERATION LOOP

0
<a¢+€¢XVJ_A VJ_>]¢—€Z Vﬂ

» We already know the characteristics for this equation, and the
RHS of this equation on the characteristics

= Solving for J4 is a straightforward 1D (Lagrangian) integral

» We can then evaluate 0A/0p and 0A /00 required for the next
iteration:

% 7N p—p'cos(d —¢') T,
ap(pﬁ,@ //dpd9 [p T5 72— 2ppcos(0—0) Jo(p', 0, 9)

0A , p 2cos(0 — 0)
a6’ I
89 p> 7¢ // 0 p T ,0 pr COS(G 0/)]¢(p 79 a¢)




PRELIMINARY RESULTS — LAST ISSUE?

Start with vacuum field (in this case, dominant / = 2 component,
somel!=3and [ =4)
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PRELIMINARY RESULTS — LAST ISSUE?
Flux surfaces after 1st iteration
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Need to calculate the new location of the magnetic axis to evaluate
new (3 profile; is there a fast numerical scheme to do that?
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