Gyrokinetic studies of edge ETG turbulence using GENE

Daniel Told, P. Xanthopoulos, F. Jenko

Many thanks to the ASDEX Upgrade Team and the rest of the GENE Development Team

Max-Planck-Institut für Plasmaphysik, Garching

Gyrokinetics for ITER workshop, Vienna April 6th 2011 Gyrokinetic studies of edge ETG turbulence using GENE 1 / 15

2 First global ITB/ETB simulations using GENE

The GENE code - http://gene.rzg.mpg.de

Vlasov solver for delta-f gyrokinetic equations

Physics content:

- Local and global mode
- Arbitrary number of species (trapped/passing)
- Electromagnetic fluctuations (perp. + par.)
- Collisions (energy+pitch angle scattering)
- Realistic field geometry (interfaces to CHEASE, EFIT, TRACER, GIST)
- Sources for gradient-driven and flux-driven studies

Other features

- Python-based graphical launcher tool
- IDL-based diagnostics
- Optional HDF5 output
- Auto-parallelization, auto-optimization

Pirst global ITB/ETB simulations using GENE

ETGs can explain edge electron heat flux

IPP

What causes residual electron heat flux in H-Modes? Simulations for AUG H-Mode #20431:

- Nominal profiles: Electron heat flux $Q_e \approx 8$ MW \Rightarrow comparable to total input power
- Linear+nonlinear threshold η_e ≈ 1.2
 ⇒ ETGs should be unstable in most AUG edge plasmas (AUG: 1-3)

Large resolution requirements

IPP

Optimized parallel grid:

• Define parallel coordinate that runs more slowly through the low-field side:

 $z' = \operatorname{arsinh} kz \cdot \frac{\pi}{\operatorname{arsinh} k\pi}$

• Transform parallel metric components via chain rule

• Interpolate to equidistant-z' grid

Ibb

What about perpendicular resolution?

Properties:

IDΠ

- Edge characterized by large magnetic shear
 ⇒ can lead to spurious ballooning of heat flux (Scott, 2001)
- Strong ballooning of ETG heat flux observed
 ⇒ real or artificial?

Use shifted metric treatment:

- Shift y coordinate: y_k = y − x ⋅ g^{xy}/g^{xx} ⇒ orthogonalization of field-aligned coordinates
- Requires use of nonlocal GENE (no Fourier treatment of radial direction possible)

Agreement between shifted/standard metric

Numerical approach

- Use nonlocal code with 'local' profiles
- Shifted metric incompatible with periodic radial boundaries
 ⇒ use Dirichlet boundary with damping zones + Krook-type heat source (see later)

Results of comparison:

- Heat flux spectrum very similar
- Parallel localization appears in both geometry descriptions
- Average heat flux (including damping zones) $\sim 20\%$ lower

Local convergence tests

• Heat flux robust with respect to perpendicular resolution

Ibb

• Strong shaping: n and T fluctuations show only weak decay

Influence of impurities and temperature ratio

Adiabatic ion response:

•
$$\tilde{n}_i/n_{i0} = -\tau(e\tilde{\phi}/T_e)$$
 with $\tau = Z_{\rm eff}T_e/T_i$ (for equal T_i 's)

- Expectation: no dependence of R/L_{Te,crit} on τ due to large density gradient (Jenko et al. '01)
- Reaction of heat flux to this parameter?

I ETG turbulence studies in the plasma edge

2 First global ITB/ETB simulations using GENE

Sources for gradient-driven global simulations

Sources already present in GENE

• Krook-type heat source (McMillan PoP 2008, Lapillonne PoP 2010)

$$S_{H} = -\kappa_{H} \left(\langle \delta f \rangle - \frac{\langle \int \langle \delta f \rangle dv \rangle}{\langle \int \langle F_{M} \rangle dv \rangle} \langle F_{M} \rangle
ight)$$

Conserves density and parallel momentum (δf symmetrized in v_{\parallel})

• Allows steady-state simulations close to initial profiles

Necessary addition for kinetic electron runs:

• Density profiles evolve; require particle source for steady state

$$S_{P} = -\kappa_{P} \left(\langle \delta f \rangle - \frac{\sum\limits_{\text{spec}} q \langle \int \langle \delta f \rangle dv \rangle}{q n_{\text{spec}} \langle \int \langle F_{M} \rangle dv \rangle} \langle F_{M} \rangle \right)$$

- Conserves parallel momentum; correction term ensures quasineutrality
- Heat contribution can be compensated by adapting the heat source

First steps: ITB simulations for TCV

What causes electron ITBs in TCV?

IPP

- Experiment: Slight changes in current profile strongly change ITB strength (Sauter PRL 2005)
- Strongly varying temperature requires large velocity space resolutions (example: 128 × 24 × 24 × 96 × 64)

First tests for global AUG edge simulations

Linear study

- Box size ρ_t ∈ [0.91, 0.99] (L_x = 30ρ_{s,0.95})
- Linear runs already expensive (need ~ 80 × 48 v-space points)
- Low-k growth rates are much decreased compared to local runs
- Require buffer zones at the boundaries: should move this out of the pedestal
 ⇒ simulations must include some SOL region

Thank you for your attention!

[Jenko, 2001] F. Jenko et al., Phys. Plasmas 8, 4096 (2001)

[Jenko, 2009] F. Jenko et al., Phys. Plasmas 16, 055901 (2009)

[Lapillonne, 2010] X. Lapillonne et al., Phys. Plasmas 17, 112321 (2010)

[McMillan, 2008] B. F. McMillan et al., Phys. Plasmas 15, 052308 (2008)

[Sauter, 2005] O. Sauter et al., Phys. Rev. Lett. 94, 105002 (2005)

[Scott, 2001] B. Scott, Phys. Plasmas 8, 447 (2001)

[Told, 2008] D. Told et al., Phys. Plasmas 15, 102306 (2008)