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The monoenergetic approximation

« DKES (Drift Kinetic Equation Solver) is the standard code for calculating
neoclassical transport in stellarators. (PENTA is based on DKES.)

« In DKES, ad-hoc changes are made to the E, terms in the kinetic equation to
expedite computation. These changes are sometimes called the monoenergetic
approximation.

— Kinetic energy instead of total energy is conserved. Magnetic moment is not conserved.

— The pitch-angle scattering operator is used to model collisions, so speed v becomes just a
parameter.

* To rigorously assess whether this approximation is justified, the kinetic equation
must be solved including collisions. (Hard)

« Simpler test to avoid dealing with collisions: compare DKES trajectories to true
trajectories.

* Result: DKES systematically under-predicts the fraction of trapped particles.



Drift-kinetic equation

Characteristics of the drift-kinetic equation give effective
particle guiding-center trajectories.
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3 spatial coordinates 2 velocity coordinates,
e.g. speed & pitch angle




Equations of motion

True equations:
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DKES equations:
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U = normalized E,

Monte-Carlo codes give noisy results for the flow and bootstrap current due to +v, cancellation.



Trapped trajectories

For axisymmetric or quasisymmetric B field with constant d®/dy :
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Trapped trajectories

For axisymmetric or quasisymmetric B field with constant d®/dy :
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Trapped fraction

The true fraction of trapped particles (last page) 1s not the same as the
“effective trapped fraction”
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which appears in banana-regime neoclassical quantities.

The conventional heat flux, viscosities, and bootstrap current are all oc fteff ,



Connection to tokamak pedestals

Drift-kinetic equation:
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So in a tokamak, you can simultaneously have U ~1 and v,z vy, ; only if
radial gradient scale length is p,.

This is precisely the ordering we used to analyze tokamak pedestals.



Tokamak

From CD Beidler et al., Proc. 17th Int’l Toki Conf. and 16th Int’l Stellarator/Heliotron Workshop (2007)
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Radial particle diffusion coefficient (normalized)

°  DKES

= MOCA (Monte-Carlo) with monoenergetic trajectories



New results for quasisymmetry

 Kagan-Catto calculations for the tokamak pedestal ordering can be generalized to a
quasisymmetric stellarator.

» We use generalized pitch-angle scattering model collision operator, to follow the shift in
trapped-passing boundary.
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New results for quasisymmetry

For B = B(W, MH—N{),
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* Both in stellarators and tokamak pedestals, the
simultaneous ordering Ug, gy, ; and Vg, g VB~

U”b'VB 1s of interest.

* The conventional approach for calculating neoclassical
transport 1n stellarators involves ad-hoc changes to the
kinetic equation.

* These changes lead to O(1) errors 1n the trapped
fraction when E_ 1s large.



