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The relevant sound speed for transonic poloidal
flow Is the poloidal sound speed
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*Sound waves propagate along B-field lines with speed C. = /7,p/p

*To propagate in the poloidal direction, the sound waves _C B,
I 0 s
must go the long way  ----------- > effective speed s B



The Magnetic Field Creates a De Laval Nozzle for

the Poloidal Flow.

@ In ideal MHD, the frozen in
condition holds: plasma cannot
flow across magnetic surfaces.

@ Due to toroidal geometry, in a
tokamak the cross section
between any two nested magnetic

: O T 2n
surfaces varies with the poloidal e
angle.

e For the poloidal flow, nested
P -

magnetic surfaces act as a de -
Laval nozzle.
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Due to the Geometry, Shocks (Time-Dependent)
or Discontinuities /Pedestals (Steady-State) Form

in the Plasma.

@ The relevant velocity is the poloidal
sound speed Csp, = CsB,,/B.
@ Due to periodicity: > 0

o If the flow becomes supersonic at
the nozzle throat, a shock will Mp }
form.

o At steady state shocks are not 1
allowed, and the flow can be > O
sonic only at the nozzle throat.

o At steady state, tangential >
discontinuities will remain gz
between the subsonic and
supersonic region.
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Due to the Geometry, Shocks (Time-Dependent)
or Discontinuities /Pedestals (Steady-State) Form

in the Plasma.

@ The relevant velocity is the poloidal
sound speed Csp, = CsB,/B. g
@ Due to periodicity: 1R e =al
o If the flow becomes supersonic at - \ :
the nozzle throat, a shock will

form. \
e At steady state shocks are not Prohibited Mach Number
allowed, and the flow can be

sonic only at the nozzle throat.
e At steady state, tangential

discontinuities will remain
between the subsonic and / N“ )

supersonic region.




Equilibria with transonic polodial velocity profiles
are radially discontinuous
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 Transonic equilibria are characterized by a poloidal flow varying from subsonic
to supersonic with respect to the poloidal sound speed C,=(By/B,)(YP/p)!'?

* \V/, P and p are discontinuous at the transonic surface -> large velocity shear
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_Betti and Freidberg, Phys. Plasmas Vol. 7, p. 2439 (2000)



MHD equilibrium equations

Ve(pv)=0

N.VV=—VP+JxB
1

Ve p;V:O
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MHD equilibria with flow require the solution
of the Bernoulli and Grad-Shafranov equations
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p=D(y)/ X p=P(y)/ X’
v, = Cy ()M, () + (X ~) M, ()] C.(v) =P (w)/ D(yw)
B,R = F(y)(1+0(&* X)) Vv, = XC,(¥)M,(v)B, /B

[Vy Ay +e,oV(Rp+BiR*/2)=0(c) «—— Grad-Shafranov equation
(B~e?, el)

Bernoulli equation

R2M 2 y+1 2 2 N2 y-1 i_
R™Mj;(p) X —{m+Mg(w)+[Mg(w)—M¢(w)](R —1)}X +7_1—0

R =1+ €cos 9 X = X(y,9)

P(y), D(v), F(v), M,(w) and My(y) are free functions.



Poloidal Mach number M; vs free function My('¥)
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M, = X (17,0)7 M, ()

Mg(y)



The poloidal Mach number profile is radially
discontinuous for transonic poloidal flow profiles.
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2D MHD SIMULATIONS OF AN INITIALLY
STATIC PLASMA SET IN MOTION BY
A SOURCE OF POLOIDAL MOMENTUM




SIM2D Simulations Are Based on the MHD

Model.

We solve the standard resistive-MHD model hyperbolic
system of time-dependent equations:

%—’i +V-(pV)=0,. (Continuity)
ag"_ﬂ +V-(pVV —BB+PI) =S, om (Momentum)

JB .
57 = =V x(VxB-nd). (Faraday's Law)

d& -
W +V- [("—” +P)K—§(EE)+T?£KE} :£'§mom- (EI]EI’g}T]
B2 - p VZ B?

P=p+ R e ﬁ +p 5 + 5 (Definitions)

The equations are written in conservative form to ensure .
conservation of physical quantities. & ruoky




The “Halo” Region is Treated as a Resistive

Plasma.

e Resistive-MHD equations are used
to separate plasma and halo
region.

e The main plasma region is ~ideal.

@ The edge and halo region have
non-negligible resistivity.

@ Spitzer resistivity is used in the rest of this
presentation.

@ An artificially high halo resistivity was also tried,

with nhair:-/nplasma = 10°.
@ Notice that the focus is on the main (ideal) plasma
region.
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Initial Poloidal Sound Speed Is Low.

@ A typical free-boundary
DIII-D equilibrium used in
SIM2D simulations is
shown on the right.

o Initial poloidal sound speed
18 Snlall at the plﬂSHla EdgE. Poloidal sound speed [km/s] (colormap) and

magnetic surfaces (lines)

@ The boundary of the
computational domain
corresponds to a
superconductive wall. <

@ Outflow boundary
conditions (v ~ Cs) are used

(K]
K |m]

Elt the “FE[H. Density [10'¥m 3] (colormap) and magnetic sur-
faces (lines)
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Initial Transient Is Consistent With Theory.

Shock

Fixed-boundary, ideal simulation.
Free-boundary DII-D simulation.

@ A shock is observed at the transonic surface.

@ The shock travels in the poloidal direction from the outboard to
the inboard part of the plasma.

@ The shock vanishes at the inner midplane, where the flow is
sonic.

@ The shock is an MHD feature.



A Quasi-Steady-State MHD Pedestal Is Found In

Fixed-Boundary Time-Dependent Simulations.

o Time-dependent
simulations only reach an
approximate steady state.

o At near-steady state, the
density pedestal structure
is clearly visible.

@ The properties of the
pedestal (e.g., poloidal angle
height dependence) are in
qualitative agreement with

equilibrium calculations. Transonic




Fixed-Boundary Simulations Are Consistent with

Equilibrium Calculations.

@ After the initial transient. a
discontinuity forms in
e.g. density and velocity
profiles.

@ The discontinuity is
qualitatively consistent with
equilibrium calculations.

@ This discontinuity is a
tangential discontinuity, NOT
a shock.
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Evolution of the MHD pedestal in free boundary simulations

pedestal
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MHD
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Details of the MHD pedestal
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Similar pedestal can be obtained from
the equilibrium solution

MHD
pedestal

Free Boundary

Transonic FLOW equilibrium.



In Free-Boundary Simulations, Mach Number

and Velocity Develop Discontinuous Profiles.

@ A static DIII-D equilibrium is
perturbed with a (smooth)
poloidal momentum source.

@ Velocity and Mach number
quickly develop a .‘ T T Transonic
discontinuous prthe across Discontinuity
the transonic surface.

@ As predicted by theory, profiles F i
are smooth on the inboard side, * :
sharply discontinuous on the =3 .‘

outboard side of the plasma :
(notice the Mp =1 line!). L




Density Profiles Develop a Pedestal Structure.

@ When the flow becomes
supersonic (Vg > Csp) a shock
forms and travels in the poloidal
direction.

@ After the shock formation, the
density profile steepens.

@ A shock-less, quasi-steady state
condition is reached, with a
density pedestal (sharp density

gradient) at the transonic surface.
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Density profile shortly after the shock formation

i =h

MN[0 m

fat A=

[ 3%

0

1 1
2 14 16 1%
R |m]

1
T

Density profile after the shock has disappeared



Main ion perpendicular edge velocity on C-MOD
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R. McDermott et al, Phys. Plasmas 16, 056103 (2009)



Conclusions

* Theory, equilibrium solutions and 2D free-boundary
MHD simulations show the formation of a pedestal
when the poloidal velocity exceeds the poloidal sound
speed

*At the pedestal, a velocity radial-shear layer forms
where the poloidal velocity jumps from subsonic
to supersonic

e Such a layer is NOT a shock but a contact discontuinity
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