Gyrokinetic Large Eddy Simulations

A. Bañón Navarro¹, P. Morel¹, M. Albrecht-Marc¹, D. Carati¹, F. Merz², T. Görler², and F. Jenko²

¹Laboratoire de Physique Statistique et des Plasmas Université Libre de Bruxelles

> ²Max-Planck-Institut für PlasmaPhysik Garching bei München

Wolfgang Pauli Institute, Vienna: Gyrokinetics for ITER II

Outline

1 Introduction to GyroLES

- General principles
- Results: sub-grid term properties

2 A very first GyroLES model

- Calibration
- Estimate for the global quantities
- Limitations

3 Dynamic Procedure

- Principles
- Results

4 Future work

General principles Results: sub-grid term properties

Outline

1 Introduction to GyroLES

• General principles

• Results: sub-grid term properties

2 A very first GyroLES model

- Calibration
- Estimate for the global quantities
- Limitations

3 Dynamic Procedure

- Principles
- Results

4 Future work

Local GK simulations: Perpendicular directions (respect to B) are spectral

Direct Numerical Simulation (DNS): resolves all active scales

Large Eddy Simulation (LES): resolves large scales + models smallest ones

objective: decrease numerical effort GK DNS can go up to $N_x \times N_y \times N_z \times N_{v_{\parallel}} \times N_{\mu} = 768 \times 384 \times 16 \times 32 \times 8$ up to 100 000 *CPUh*¹, and even more (Trinity).

¹T. Görler, et al, Phys. Rev. Lett., **100** (2008).

General principles Results: sub-grid term properties

gyrokinetic equation

Distribution function $f(k_x, k_y, z, v_{\parallel}, v_{\perp}, t)$ evolution:

Applying a Fourier cutoff filter $\overline{\cdots}$ in perp. plane (k_x, k_y) to remove the smallest scales from the distribution leads to a closure problem:

$$\partial_t \overline{f} = L[\overline{f}] + N[\overline{f},\overline{f}] - D[\overline{f}] - T$$

Sub-grid term: $T = N[\overline{f}, \overline{f}] - \overline{N[f, f]}$

Describes the effect of the under-resolved scales on the largest scales

General principles Results: sub-grid term properties

Sub-grid term: $T = N[\overline{f}, \overline{f}] - \overline{N[f, f]}$ contains under-resolved information f \Rightarrow Comparisons: free energy diagnostics $\mathcal{E} \propto f^2$.

filtered GK equation:

$$\underbrace{\partial_t \overline{f}}_{\propto \overline{f}} = \underbrace{\mathcal{L}[\overline{f}]}_{\propto \overline{f}} + \underbrace{\mathcal{N}[\overline{f},\overline{f}]}_{\propto \overline{f}^2} - \underbrace{\mathcal{D}[\overline{f}]}_{\propto \overline{f}} - \underbrace{\mathcal{T}}_{\propto f^2}$$

filtered free energy equation:

$$\partial_t \underbrace{\mathcal{E}_{\overline{f}}}_{\propto \overline{f}^2} = \underbrace{\mathcal{G}_{\overline{f}}}_{\propto \overline{f}^2} + 0 - \underbrace{\mathcal{D}_{\overline{f}}}_{\propto \overline{f}^2} - \underbrace{\mathcal{T}_{\overline{T}}}_{\propto \overline{f}f^2}$$

General principles Results: sub-grid term properties

Outline

1 Introduction to GyroLES

- General principles
- Results: sub-grid term properties

2 A very first GyroLES model

- Calibration
- Estimate for the global quantities
- Limitations

3 Dynamic Procedure

- Principles
- Results
- 4 Future work

General principles Results: sub-grid term properties

Sub-grid term: $T = N[\overline{f}, \overline{f}] - \overline{N[f, f]}$ contains under-resolved information f \Rightarrow Can we simply ignore the small scales ?

 \Rightarrow No, even if the filter does not remove many scales

General principles Results: sub-grid term properties

Sub-grid term: $T = N[\overline{f}, \overline{f}] - \overline{N[f, f]}$ contains under-resolved information f \Rightarrow What is the role of the sub-grid term ?

 $\begin{array}{l} \text{consider DNS } 128\textit{N}_{x}\times 64\textit{N}_{y} \\ + \text{ test filter } \overline{\Delta}_{\perp} \end{array}$

consider resolved free energy:

$$\partial_t \mathcal{E}_{\overline{f}} = \mathcal{G}_{\overline{f}} - \mathcal{D}_{\overline{f}} - \mathcal{T}_{\overline{T}}$$

with $\mathcal{T}_{\overline{T}}$ the sub-grid contribution

\Rightarrow Sub-grid term dissipate free energy

General principles Results: sub-grid term properties

Free energy is subject to a (strongly) local, forward cascade

²A. Bañón Navarro, et al. Phys. Rev. Lett., **106**, 055001 (2011).

1	0	/	3	į

Model approximates sub-grids, depending only on *resolved* scales:

 $T\approx M[\overline{f}]$

Model dissipates free energy

 \star perpendicular hyper-diffusions³ $\propto k_{\perp}^4$:

 $M[c_{\perp},\overline{f}] = c_{\perp}k_{\perp}^{4}\overline{f}$

★ Free energy contribution:

 $\mathcal{T}_{\overline{T}}\approx \mathcal{M}$

Satisfies:

 $-\mathcal{M}<0$

³S. A. Smith and G. W. Hammett, *Phys. Plasmas*, **4** (1997).

A. Bañón Navarro, P. Morel, M. Albrecht-Marc et al.

Calibration Estimate for the global quantities Limitations

Outline

1 Introduction to GyroLES

- General principles
- Results: sub-grid term properties

2 A very first GyroLES model

- Calibration
- Estimate for the global quantities
- Limitations

3 Dynamic Procedure

- Principles
- Results

4 Future work

Calibration Estimate for the global quantities Limitations

Model:

$$M[c_{\perp},\overline{f}] = c_{\perp}k_{\perp}^{4}\overline{f}$$

Unknown free parameter: c_{\perp}

Free energy spectra vs c_{\perp} :

 k_y spectrum

Cyclone Base Case (ITG)

- $\star c_{\perp}$ too small
 - \Rightarrow not enough dissipation
- ★ c_{\perp} too strong
 - \Rightarrow overestimates injection
- $\star~c_{\perp}=0.375$ good agreement

ightarrow "plateau" for $c_{\perp} \in [0.25, 0.625]$

Calibration Estimate for the global quantities Limitations

Model:

$$M[c_{\perp},\overline{f}] = c_{\perp}k_{\perp}^{4}\overline{f}$$

Unknown free parameter: c_{\perp}

Free energy spectra vs c_{\perp} :

 k_x spectrum

Cyclone Base Case (ITG)

- $\star c_{\perp}$ too small
 - \Rightarrow not enough dissipation
- $\star c_{\perp}$ too strong
 - \Rightarrow overestimates injection
- $\star~c_{\perp}=0.375$ good agreement

ightarrow "plateau" for $c_{\perp} \in [0.25, 0.625]$

Numerical cost $\sim DNS/30$

Calibration Estimate for the global quantities Limitations

Outline

1 Introduction to GyroLES

- General principles
- Results: sub-grid term properties

2 A very first GyroLES model

- Calibration
- Estimate for the global quantities
- Limitations
- **3** Dynamic Procedure
 - Principles
 - Results
- 4 Future work

Global quantities (Q) are truncated: heat flux, ...

- \star In a LES, only the resolved part of Q is directly accessible $o \overline{Q}$
- \star The unresolved part of Q has to be estimated $o \delta Q$
- \star Q can be approximated by decaying power laws in the LES spectra:

$$Q^{k_x} pprox A_x k_x^{-lpha_x} \qquad Q^{k_y} pprox A_y k_y^{-lpha_y}$$

 $\rightarrow \delta_{xy} Q \ll \delta_x Q, \delta_y Q$

$$\begin{aligned} \mathcal{G}^{\text{LES}} &= 1.11 \, \mathcal{G}^{\text{DNS}} & \mathcal{G}^{\text{No Model}} &= 1.38 \, \mathcal{G}^{\text{DNS}} \\ \mathcal{E}^{\text{LES}} &= 1.10 \, \mathcal{E}^{\text{DNS}} & \mathcal{E}^{\text{No Model}} &= 2.1 \, \mathcal{E}^{\text{DNS}} \end{aligned}$$

\Rightarrow Good agreement with model

Calibration Estimate for the global quantities Limitations

Outline

1 Introduction to GyroLES

- General principles
- Results: sub-grid term properties

2 A very first GyroLES model

- Calibration
- Estimate for the global quantities
- Limitations

B Dynamic Procedure

- Principles
- Results

4 Future work

Calibration Estimate for the global quantities Limitations

Robustness of $c_{\perp} = 0.375$? Comparison between GyroLES and DNS - $\omega_{Ti} = 8.0$.

- * strong turbulence: good agreement
- \star slightly overestimate of the free energy at small scales

 $ightarrow c_{\perp}$ should be increased a little

Calibration Estimate for the global quantities Limitations

Robustness of $c_{\perp} = 0.375$? Comparison between GyroLES and DNS - $\omega_{Ti} = 6.0$.

* weak turbulence: less satisfactory agreement

 $ightarrow c_{ot}$ should be decreased

develop alternative methods: dynamic calibration

Principles Results

Outline

1 Introduction to GyroLES

- General principles
- Results: sub-grid term properties

2 A very first GyroLES model

- Calibration
- Estimate for the global quantities
- Limitations

Bynamic Procedure Principles

- Results
- 4 Future work

model coefficient has to vary when varying external parameters

 \Rightarrow Calibrate model parameters dynamically

model coefficient has to vary when varying external parameters

 \Rightarrow Calibrate model parameters dynamically

A very first GyroLES model Dynamic Procedure Future work Summary

Principles

model coefficient has to vary when varying external parameters

 \Rightarrow Calibrate model parameters dynamically

model coefficient has to vary when varying external parameters

 \Rightarrow Calibrate model parameters dynamically

Minimize difference between GyroLES with $\widehat{\Delta}$ and GyroLES with $\overline{\Delta}$ and test filter:

$$\int d\overline{\Lambda} \,\partial_c \left(M[c,\widehat{\Delta},\widehat{f}] - \widehat{M[c,\overline{\Delta},\overline{f}]} - \mathcal{T}_{\overline{\Delta},\widehat{\Delta}} \right)^2 \approx 0$$

 \Rightarrow optimized free parameter c \Rightarrow can be done for many parameters

$$\begin{array}{lll} M[c_{\perp},\Delta,f] &=& c_{\perp}\Delta^a k_{\perp}^n f \\ M[c_x,c_y,\Delta,f] &=& c_x \Delta^a k_x^n f + c_y \Delta^a k_y^n f \Rightarrow {\sf Anisotropy} \end{array}$$

Outline

1 Introduction to GyroLES

- General principles
- Results: sub-grid term properties

2 A very first GyroLES model

- Calibration
- Estimate for the global quantities
- Limitations

3 Dynamic Procedure

- Principles
- Results
- 4 Future work

Principles Results

Comparison between GyroLES and DNS - $\omega_{Ti} = 6.0$.

★ weak turbulence: good agreement

Principles Results

Comparison between GyroLES and DNS - $\omega_{Ti} = 8.0$.

★ strong turbulence: good agreement

 \star slightly overestimate of the free energy at small scales

Numerical cost $\sim DNS/20$

Future work

- ★ Test dynamic procedure for different set of parameters: magnetic shear ŝ, safety factor q ... (analyses in progress)
- \star Studies with ETG driven turbulence
- \star Studies with two kinetic species
- $\star\,$ Implementation of more sophisticated models

Summary

- \star Model is needed even if resolution is not decreased dramatically
- $\star\,$ Analysis of DNS shows that models have to dissipate free energy
- \star A simple model $M = c_\perp k_\perp^4 f$ has been successfully tested
- $\star~c_{\perp}\simeq 0.375$ has been calibrated by trial and error for a given set of parameters 4
- * Dynamic calibration of the amplitude of the model has been successfully tested for some parameters.

⁴P. Morel, et al, submitted to Physics of Plasmas

Thank you