Gyrokinetic Microtearing Studies

C M Roach

summarising work involving many collaborators:

D J Applegate0, JW Connor, S C Cowley, D Dickinson1, W Dorland2,

R J Hastie, S Saarelma, A A Schekochihin3 and H R Wilson1

Euratom/CCFE Fusion Association, Culham Science Centre, UK

0 SERCO

1 University of York, UK

2 University of Maryland, US

3 University of Oxford, UK

This work was funded by the United Kingdom Engineering and Physical Sciences Research Council and the European Communities under the contract of Association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Outline of the Talk

Summary of mostly old gyrokinetic simulations of microtearing modes in STs, using GS2.

(1) Tearing Parity Modes and Simulation Literature
(2) Microtearing Mode in MAST
(3) Contact with Analytic Theory
(4) Nonlinear Simulations
(5) Key Questions
Local ballooning space represents physical quantities as twisting slices:

\[F(x, y, \theta) = e^{ik_y(y+s(\theta-\theta_0)x)} \sum_{p=-\infty}^{\infty} \hat{F}(\theta - \theta_0 - 2\pi p)e^{inq(x)2\pi p} \]

- fast \(\perp \) variation
- slow \(\parallel \) variation

\(x \) is equ'm flux surface label, \(x=0 \) at \(q(x)=m/n \)
\(y \) equ'm field line label, \(\perp \) to \(b \), lying in the flux surface
\(\theta \) is \(\parallel \) to \(b \)

\(\hat{F} \) is defined on infinite domain in the ballooning angle \(\eta \),
\(\theta_0 \) is the ballooning parameter.

\[\hat{F}(\eta) \rightarrow 0 \quad \text{as} \quad \eta \rightarrow \pm \infty \]

\(\hat{F} \) eigenfunctions are either even or odd in \(\eta \), about \(\eta = \theta_0 \)
At $x=0$, the parity of $\hat{F}(\eta)$ about $\eta = \theta_0$ in ballooning space determines the symmetry of F along the field line in real space.

Perturbed magnetic field comes from $\delta B = \nabla \times \delta A$

\Rightarrow radial component: $\delta B_x = \partial A_\parallel / \partial y = i k_y A_\parallel$

A_\parallel even, conclude for $x=0$ that

$\Rightarrow \delta B_x$ same sign along equ’m field line

$\Rightarrow \delta B_x$ sinusoidal in y at fixed θ

\Rightarrow equilibrium field lines are torn!

Even A_\parallel implies tearing of magnetic flux surface $x=0$
Some Gyrokinetic Microtearing Mode Simulations in the Literature

Microtearing found in study high β and high performance plasmas:

Often dominant instabilities for $k_y \rho_i < 1$ at mid-radius in MAST plasmas:

Microtearing found to dominate ST Power Plant equilibrium:

Detailed numerical study of microtearing, ST reference, includes scan in R/a:
- D J Applegate et al, PPCF 49, 1113 (2007)

Nonlinear analytic theory of μ-tearing may explain electron transport in NSTX

Edge plasmas in ASDEX-Upgrade have μ-tearing modes
MAST equilibrium from ELMy H-Mode #6252

At mid-radius surface $\Psi_n=0.4$, $\beta_e=0.05$, $q\sim 1.35$ $T_i \sim T_e$, $a\sim 0.3m$, $R\sim 0.9m \Rightarrow R/a\sim 3$

Fastest growing modes in STs often found to have tearing parity:

• MAST [1], and NSTX [2]
• conceptual burning STs [3,4]

MAST tearing parity modes rotate in **electron** diamagnetic drift direction
Poincaré plot shows perturbed magnetic field at intersection of GS2 flux-tube with the outboard mid-plane.

Magnetic island on rational surface at x=0.

Microtearing mode is candidate to explain electron transport

Two Major Questions:
What is the linear physics mechanism underlying these modes?
How much anomalous transport is generated at nonlinear saturation?
∇T_e microtearing drive discovered in cylinder
- \textit{Hazeltine Dobrott and Wang (1975)}: kinetic, collisions key, any ν_e/ω

Further slab calculations confirm ∇T_e drive at high ν_e/ω
-> collisional slab drive requires energy dependent ν_e(E)

Kinetic calculations in toroidal geometry (large R/a), for low ν_e/ω
⇒ low collisionality drive from trapped particle collisions on passing particles also requires energy dependent ν_e(E)

MAST has small R/a and ν_e/ω \sim 0.5
so analytic theories should be poor. Catto-Rosenbluth trapped particle drive mechanism, nevertheless, predicts growth with MAST parameters!Connor, Cowley, Hastie does not!

\textit{CM Roach et al, PPCF 47, B323 (2005)}
Two classes of linear drive in analytic theory literature:

- time dependent thermal force (high collisionality, $\nu_{ei} > \omega$)
- collisions close to the trapped-passing boundary ($\nu_{ei} < \omega$)

Both drives require

- finite dT_e/dr
- energy dependent collision frequency $\nu_{ei}(v)$

Some properties of the GS2 mode:

- **sensitive** to electron physics v_e, ∇T_e and ∇n_e
- **sensitive** to β, ∇p, s
- **insensitive** to ion parameters v_i and ∇T_i and δB_\parallel
- current layer width $\sim O(\rho_i)$

GS2 Lorentz collision operator can capture boundary layers.

Removed energy dependent collisions by setting $\nu_e(E) =$ constant

Experiment with Collision Operator

Modest affect on tearing γ not consistent with analytic drive models!

DJ Applegate et al, PPCF 49, 1113 (2007) and PhD Imperial College (2006)
Fit MAST mid-radius surface with s-α model for fixed β, a/L_T, a/L_n, q, s

Scan r/R_0 by varying R_0 and fixing r and other parameters, varies drifts $+ f_t$

• MAST instability in s-α too
 ⇒ shaping not essential
• $\gamma \downarrow$ as $r/R_0 \downarrow$
• still unstable at $r/R_0 = 0.118$
 ⇒ μtearing may appear at conventional aspect ratio
Experiments Using s-α Model Equilibrium: Scan R_0 at fixed r/R_0 to Vary Drifts

DJ Applegate *et al.*, PPCF *49*, 1113 (2007)

Now scan in R_0 at fixed r/R_0 with other parameters constant.

Mode survives at $R_0 = \infty$ i.e. zero drift
- mode has slab drive
Now scan \(r/R_0 \) to vary \(f_t \) at fixed \(R_0 \) and other parameters.

High \(f_t \):
- \(\gamma \uparrow \) at low \(\nu_e \)
- \(\gamma \downarrow \) at high \(\nu_e \) (fewer passing e)

Low \(f_t \):
- \(\gamma \) more sensitive to energy dependent collision rate \(\nu_e(E) \)
Microtearing mode is driven by dT_e/dr as expected.

Mode is complicated and in awkward regime for analytic theory:
- unstable over broad range of collisionality $0.05 < \nu_{ei}/\omega < 1.2$
- current layer width $\sim O(\rho_i)$, so need ion FLR effects

Regimes where mode robust to energy independent collisions \Rightarrow puzzle

Mode not only unstable in ST
- unstable in large aspect ratio $s-\alpha$ model equilibria

Gyrokinetic microtearing also at $r/R \sim 0.3$ (\sim MAST mid-radius) in conventional aspect ratio: D Told $et al$, Phys. Plasmas 15, 102306 (2008)
* Very High β: Microstability in STPP

see H R Wilson et al, Nuc Fus 44, 917 (2004)

Conceptual Culham ST Power Plant (STPP), 1GW electrical, $\beta=0.59$

GS2 used for microstability analysis of mid-radius flux-surface, $\Psi_n=0.35$.

Equilibrium features:

- striking variation in $|B|$ around the magnetic flux surface
- magnetic drift reversal owing to high pressure gradient
- diamagnetic ω_{se} strongly peaked on outboard midplane
Microstability Results for Mid-radius Surface in STPP

STPP surface $\Psi_n = 0.35$

- no electrostatic instabilities, α stabilisation giving drift reversal
- including EM gives tearing parity modes at ion and electron scales

$k_y \rho_l = 0.4$

$k_y \rho_l = 6$
STPP surface $\Psi_n = 0.35$

- **no electrostatic instabilities** (α stabilisation from drift reversal)
- EM effects gives **tearing parity modes at ion and electron scales**, all propagating in electron drift direction
- Mixing length $\chi \sim 4 m^2 s^{-1}$ (no ω_{se})

Microstability Results for Mid-radius Surface in STPP

GK electrons + adiabatic ions, less extended along B => cheaper!

4 species + highly extended along B => expensive!
Nonlinear Microtearing Simulations with GS2

First nonlinear GK simulations with GS2 [1,2]:
 • modified mid-radius MAST equilibrium for increased tractability

<table>
<thead>
<tr>
<th></th>
<th>MAST Equilibrium</th>
<th>Nonlinear Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q)</td>
<td>1.3463</td>
<td>1.3463</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.286</td>
<td>1.4</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.0495</td>
<td>0.12</td>
</tr>
<tr>
<td>(a/L_{n_e})</td>
<td>-0.1766</td>
<td>2.4</td>
</tr>
<tr>
<td>(a/L_{T_e})</td>
<td>2.0433</td>
<td>2.0433</td>
</tr>
<tr>
<td>(a/L_{P_e})</td>
<td>1.8667</td>
<td>4.4433</td>
</tr>
<tr>
<td>(a/L_{n_i})</td>
<td>-0.1766</td>
<td>2.4</td>
</tr>
<tr>
<td>(a/L_{T_i})</td>
<td>2.0433</td>
<td>2.0433</td>
</tr>
<tr>
<td>(a/L_{P_i})</td>
<td>1.8667</td>
<td>4.4433</td>
</tr>
</tbody>
</table>

Few \(k_y \) modes: \(n_{k_y}=4, n_{k_x}=47, n_\theta=32, n_E=8, n_\lambda\sim20 \)
 • “pseudo-saturation” with low transport, blows up later at high \(k_x \)
 • small timesteps imposed by the CFL condition

Impact of Adding Dissipation at High k

Use hyperviscosity for high k dissipation, parameterised by D

- no impact on linear physics
- improves convergence
- “saturation” insensitive to D

but what are we throwing away?

![Graph showing the impact of adding dissipation at high k]

$D = 0, 0.5, 1, 2$
Nonlinear Electron Heat Flux

Hyperviscosity smoothes high k_x
- spike events reappear at $nky=8$

A_\parallel contribution dominates q_e
- low heat fluxes at “saturation”
Poincaré Plot and δj_\parallel contours at $\theta=0$

before spike event, $t=532$
Poincaré Plot and $\delta j_{||}$ contours at $\theta=0$, $t=598$.

D J Applegate

after spike event perturbed field wanders further, transport \uparrow
$A_{||}$ Spectra for nky=8 Simulation

Spikes most evident at high k, but are controlled by D

highest k
middle k
lowest finite k_x, or $k_y=0$

steady growth in zonal modes
* Φ Spectra for nky=8 Simulation

Spikes most evident at high k, but suppressed by D

highest k
middle k
lowest finite k_x, or $k_y=0$
Fidelity Issues

Convergence?
- saturation sensitive to \(\text{Min}(k_y) \), and we need to go lower in \(k_y \)!
- what causes the high \(k \) spikes? are we dissipating important physics?

Flux-Tube equilibrium?
- as reduce \(\text{Min}(k_y \rho_i) \), we go to low \(n \)
- \(s^{\text{SIM}} = 5 \ s^{\text{MAST}} \) so \(L_x \) artificially small
- at lower \(k_y \) and \(s \), flux-tube gets fatter, to challenge local approximations

More work needed!
Impact of FLOW SHEAR on microtearing modes?

- \(\gamma_E > \gamma_{\text{lin}} \) so will they be suppressed?
- slab drive may make suppression more difficult
- almost done
Conclusions

Microtearing modes from GS2 simulations of MAST are complicated!
- trapped and passing particles contribute drive with dT_e/dr
- insensitivity of γ to energy dependent collision frequency is puzzling
- μtearing specific neither to ST geometry nor to GS2!
 - linear benchmark?
 - map out where μtearing important

Limited comparisons with analytic theory so far.
- do better in easier limits?

Preliminary nonlinear simulations for MAST mid-radius are interesting, but:
- more work needed to test convergence
- what is happening at high k?
- local flux-tube equilibrium is challenged if n gets too small!
 - easier equilibria?
 - impact of FLOW SHEAR?