Outline of the Talk	Summary of mostly old gyrokinetic simulations of microtearing modes in STs, using GS2.	 Tearing Parity Modes and Simulation Literature Microtearing Mode in MAST 	(3) Contact with Analytic Theory	(4) Nonlinear Simulations	(5) Key Questions	
	Norkshop on Gyrokinetics for ITER Wolfgang Pauli Institute, Vienna, March 2010 (CMR)					

Eigen-Mode Parity along Equilibrium Magnetic Field is Even or Odd	Local ballooning space represents physical quantities as twisting slices:	$F(x, y, \theta) = e^{ik_y(y+s(\theta- heta_0)x)} \sum_{p=-\infty}^{\infty} \hat{F}(heta- heta_0-2\pi p) e^{inq(x)2\pi p}$ fast \perp variation $p=-\infty$ slow II variation	x is equ'm flux surface label, x=0 at q(x)=m/n y equ'm field line label, \perp to b , lying in the flux surface θ is II to b	\hat{F} is defined on infinite domain in the ballooning angle $\eta,$ θ_0 is the ballooning parameter.	$F(\eta) \rightarrow 0 \text{ as } \eta \rightarrow \pm \infty$	\hat{F} eigenfunctions are either even or odd in η , about $\eta = \theta_0$
--	---	---	---	---	---	---

က

Tearing Parity Modes

ni sr	GS2	GS2	GS2	R/a: <mark>GS2</mark>	ISTX	
Some Gyrokinetic Microtearing Mode Simulation the Literature	Microtearing found in study high β and high performance plasmas: ➤ M Kotschenreuther <i>et al</i> , Nuclear Fusion 40 , 677 (2000)	Often dominant instabilities for k _y p _i < 1 at mid-radius in MAST plasmas: ➤ D J Applegate <i>et al</i> , Phys Plasmas 11 , 5085 (2004) ➤ C M Roach <i>et al</i> , PPCF 47 , B323 (2005)	Microtearing found to dominate ST Power Plant equilibrium:	Detailed numerical study of microtearing, ST reference, includes scan in D J Applegate <i>et al</i>, PPCF 49, 1113 (2007) 	 Nonlinear analytic theory of μ-tearing may explain electron transport in N K L Wong <i>et al</i>, Phys. Rev. Lett. 99, 135003 (2007) 	Edge plasmas in ASDEX-Upgrade have μ-tearing modes ➤ D Told <i>et al</i> , Phys. Plasmas 15 , 102306 (2008)
		(Ch 2010 (CMR)	ısM ,snn∋iV ,	ətutizni ilus ^c	A paspiloW	Ю

Workshop on Gyrokinetics for ITER

Linear Microstability Analysis at Mid-Radius in MAST

See Applegate et al, Physics of Plasmas (2004)

Workshop on Gyrokinetics for ITER Wolfgang Pauli Institute, Vienna, March 2010 (CMR)	Analytic Theories of Microtearing Drives and Properties of the GS2 Modes Two classes of linear drive in analytic theory literature: • time dependent thermal force (high collisionality, $v_{ei} > \omega$) • collisions close to the trapped-passing boundary ($v_{ei} < \omega$) • collisions close to the trapped-passing boundary ($v_{ei} < \omega$) Both drives require • finite dT _e /dr • finite dT _e /dr • energy dependent collision frequency $v_{ei}(v)$ Some properties of the GS2 mode: • sensitive to electron physics v_{e} , ∇T_{e} and ∇n_{e} • sensitive to β , ∇p , s • current layer width $\sim O(\rho_{i})$
10	[1] DJ Applegate <i>et al</i> , PPCF 49 , 1113 (2007) and PhD Imperial College (2006)

	Overview of Most Interesting Findings DJ Applegate <i>et al</i> , PPCF 49, 1113 (2007)
	Microtearing mode is driven by dT _e /dr as expected.
(SMR)	Mode is complicated and in awkward regime for analytic theory:
5010	\blacktriangleright unstable over broad range of collisionality 0.05< υ_{ei}/ω <1.2
na, March · ITER	\blacktriangleright current layer width ~ O(ρ_i), so need ion FLR effects
kinetics for litute, Vieni	Regimes where mode robust to energy independent collisions \Rightarrow puzzle
uli Inst Usylov	Mode not only unstable in ST
ed buel 10 doys	\blacktriangleright unstable in large aspect ratio s- $lpha$ model equilibria
Μοιξά Μοιξ	Gyrokinetic microtearing also at r/R \sim 0.3 (\sim MAST mid-radius) in conventional aspect ratio: D Told <i>et al</i> , Phys. Plasmas 15 , 102306 (2008)
15	

Volfgang Pauli Institute, Vienna, March 2010 Workshop on Gyrokinetics for ITER

	Nonlir	near N	Aicrotearing	Simulations	with GS2
					D J Applegate
	First nonline	ar GK	simulations with	GS2 [1.2] :	
	 modifie 	ed mid-	radius MAST ed	quilibrium for inc	creased tractability
(มพะ					
)			MAST Equilibrium	Nonlinear Model	
010		q	1.3463	1.3463	reduces radial box size
)7 4		Ś	0.286	1.4	by factor 5
arci S		β	0.0495	0.12	
' W		a/L_{n_e}	-0.1766	2.4	
nna Trua		a/L_{T_e}	2.0433	2.0433	
əiV Ə		a/L_{P_e}	1.8667	4.4433	
te' tio		a/L_{n_i}	-0.1766	2.4	
nit Uitu		a/L_{T_i}	2.0433	2.0433	
i Ius ελιο		a/L_{P_i}	1.8667	4.4433	
ijne, Duc	-				
d bu dou	Few k _v mode	es: n _{kv} =	=4, n_{kx} =47, n_{h} =3;	2 n _F =8, n ₃ ~20	
ebji Isyj	• "pseud	lo-satur	ration" with low 1	rransport, blows	un later at high k
oW	, emall ti	moetor	the imposed by the	an openations and the second sec	
			n ha nacodini cr		_
	[1] D J Applegate I	PhD Thes	is, Imperial College (20	07).	
19	[2] D J Applegate	et al, 32nd	I EPS, Tarragona, EC/	A volume 29C, P5-101	, 2005

Workshop on Gyrokinetics for ITER

Poincaré Plot and $\delta j_{||}$ contours at 0=0 DJ Applegate

Wolfgang Pauli Institute, Vienna, March 2010 (CMR) Workshop on Gyrokinetics for ITER

Fidelity Issues

Convergence?

- saturation sensitive to $\text{Min}(k_y),$ and we need to go lower in $k_v!$
- what causes the high k spikes?

(CMR)

- are we dissipating important physics?
- Flux-Tube equilibrium?
- as reduce $Min(k_y \rho_i)$, we go to low n • $s^{SIM} = 5 s^{MAST}$ so L_x artificially small

Volfgang Pauli Institute, Vienna, March 2010

Workshop on Gyrokinetics for ITER

 at lower k_y and s, flux-tube gets fatter, to challenge local approximations

רואוג)	Do M Impact	Alicrotearing Modes Matter in MAST Anyway D Dickinson, York t of FLOW SHEAR on microtearing modes? $\gamma_{E} > \gamma_{in}$ so will they be suppressed? Slab drive may make suppression more difficult	
) 0107	•	almost done	
излем 'ец		90.0	
иәіл '	ß	0.04	
ອາກາກອ	UUI	0.03	
sui iin	n.er	0.0	
ea 6u)	0.01	
еблоти			
		-0.01 E	

Ļ

 \bigcirc

 \sim

 \bigcirc

Workshop on Gyrokinetics for ITER

Theta°0

 Microtearing modes from GS2 simulations of MAST are complicated! Inspeed and passing particles contribute drive with dT_e/dr Insensitivity of γ to energy dependent collision frequency is puzzling Insensitic neither to ST geometry nor to GS2! 	 Inetics for ITER map out where µtearing important map out where µtearing important do better in easier limits? 	 Preliminary nonlinear simulations for MAST mid-radius are interesting, but more work needed to test convergence what is happening at high k? local flux-tube equilibrium is challenged if n gets too small! easier equilibria? impact of FLOW SHEAR?
--	---	---