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Motivation and Experimental Results

Definition

β ≡ βe =
8πne0Tref

B2
ref

Features in

bootstrap
fraction ∝ β

fusion reaction
rate ∝ β2

(kinetic) ballooning
threshold

magnetic fluctuations
and transport

β scalings of confinement
time differ:

JET ’04: no β dependence

ASDEX ’07: ∝ β−1

JET ’08: ∝ β−1.4

But : fixing parameters difficult
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GENE and Previous Results

The GENE code
www.ipp.mpg.de/∼fsj/gene

nonlinear gyrokinetic
equations

multiple fully kinetic
particle species

collisions and
electromagnetic effects

linear Eigenvalue solver

radially local and
nonlocal modes

open source

Previous gyrokinetic
simulations:

Jenko 2001, Parker 2004,
Dannert 2004, Candy 2005,
Pueschel 2008

Good agreement :
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Cyclone Base Case
Density Gradient Driven TEM Case
Pure ITG Case

1 β Scans
Cyclone Base Case
Density Gradient Driven TEM Case
Pure ITG Case

2 Magnetic Fluctuation Strength

3 Magnetic Stochastization

4 Parallel Magnetic Fluctuations
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Pure ITG Case

Growth Rates and KBM Onset
Linear analysis
(here: ky = 0.2):
depending on β, one gets
dominant ITG, TEM, or KBM

KBM threshold :
destabilization at βcrit

minimal βcrit at nonlinear transport peak
gradient dependence: only ωTi significant,
βcrit increases strongly for low values, exceeds βMHD

crit
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Nonlinear Transport Levels

⇒ regimes not same as lin-
ear; high-β transport drop :
mode interaction (Merz 2008)
and zonal flows
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Growth Rate and KBM Onset

Density gradient driven trapped electron mode:

KBMs appear first at lowest ky

no KBMs appear in the MHD stability regime
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Transport and Zonal Flows

⇒ different behavior :
slight decrease linearly,
increase nonlinearly
KBM threshold: same as lin-
ear threshold

Zonal flows are
able to bridge the
linear-nonlinear gap

M.J. Pueschel Turbulence at High Plasma β



β Scans
Magnetic Fluctuation Strength

Magnetic Stochastization
Parallel Magnetic Fluctuations
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Growth Rate and KBM Onset

Pure ITG scenario (ωTe = 0),
designed to have gap at intermediate β
between ITG and KBM

⇒ same as for Cyclone, except for missing TEM regime
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Transport and Zonal Flows

⇒ much stronger decline
nonlinearly with β,
KBM onset at the same βcrit

Zonal flow impact on the
transport curve:

Sufficient to explain drop?
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Dimits Shift Study

⇒ The nonlinear upshift of the critical gradient is increased
for rising β values

Are zonal flows sufficient to explain this effect?
(work in progress)

Note: one single runoff case was found
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Transport Runoff

CBC runoff (β ≈ 0.85%): no saturation, transport at smallest ky

Benchmark effort of gyrokinetic codes underway (Bill Nevins):

⇒ good agreement on runoff threshold
GENE findings: “stable” region around β ∼ 1.2%
How to avoid: initial condition; β ramp-up
How not to avoid: larger box, higher resolution
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Density Gradient Driven TEM Case
Pure ITG Case

2 Magnetic Fluctuation Strength

3 Magnetic Stochastization

4 Parallel Magnetic Fluctuations
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Applications

The radial magnetic field fluctuation Bx influences, e.g.:

Model for electron heat
transport along
perturbed field lines :

Test particle transport model

χem
e = q0R

(

Te

me

)1/2

〈B2
x/B2

ref〉

Redistribution of NBI ions
in turbulence (Hauff 2009):

Dem ∝ B2
x E0

beam
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Fluctuation Levels

Using β scans to fit
straight lines to data:

Bx

B0
= Cx

β

βKBM
crit

ρi

R0

⇒ fluctuations strongest for
ITG turbulence

Radial Fluctuations

Cx,CBC,ITG ∼ 0.8

Cx,ITG ∼ 0.8

Cx,CBC,TEM ∼ 0.4

Cx,TEM ∼ 0.2

Cx,MT−Doerk ∼ 0.2

(caveat : CBC has
no pure nonlinear TEM)

For the corresponding, Cy, slightly higher results are obtained
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Field Line Integration

Integration Scheme

interpolate Bx,y(x, y, z)

seed lines at z = 0

obtain Bx,y(lines)

calculate new position
at ∆z/2, obtain Bx,y

use new field at old
position

integrated with the
GENE Diagnostics Tool

optimized

benchmarked (Bill Nevins)
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Flux Surface Destruction

⇒ flux surfaces disintegrate at moderate β
nonlinearly, islands are destroyed even at low β
stochastization independent of runoff, transport
Application : (micro-)tearing, reconnection
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B‖: Equations

If B‖ is not neglected, have coupled Φ-B‖ system
(A‖ remains decoupled):

Φ = C̄3M00 − C̄2M01

B‖ = C̄1M01 − C̄2M00

M00 ∼
∑

j

∫

J0gjd
3v

M01 ∼
∑

j

∫

I1gjd
3v

Coupling in Vlasov equation via: χ = Φ − vTjv‖A‖ + µT−1
j q−1

j B‖

and via modified FLR corrections to the moments

Independently at high β: equillibrium j0‖ effects
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B‖: Transport and Impact

New B‖ component of the (electromagnetic) particle flux:

Γj = −nj0

(

(∂yΦ)M00 − vTj(∂yA‖)M10 + Tj0q−1
j B−1

0 (∂yB‖)M02

)

Impact : typically, ∆γ ∼ 10 − 20% is observed
near the KBM limit
Stellarators (β ∼ 5%) and astrophysical applications
(e.g., β & 1) can have strong B‖ contributions

Computational effort : ∼ 2% more

What is done in GS2?
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Points for Discussion

role of zonal flows at large β (Maxwell stress . . . )

Dimits shift : what causes the sudden change?

magnetic fluctuations : universality, dependence on
parameters

magnetic surfaces : quantitative approaches, effect on
turbulence

runoff causes, prevention

B‖: impact, magnetic transport definitions
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