Turbulence at High Plasma β

Moritz J. Pueschel

Thanks to

F. Jenko, W.M. Nevins, T. Hauff, H. Doerk

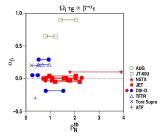
Gyrokinetics for ITER

Vienna, Mar. 16, 2010

Max-Planck-Institut für Plasmaphysik

 $\begin{array}{c} \beta \text{ Scans} \\ \text{Magnetic Fluctuation Strength} \\ \text{Magnetic Stochastization} \\ \text{Parallel Magnetic Fluctuations} \end{array}$

Motivation and Experimental Results


Definition

$$eta \equiv eta_{
m e} = rac{8\pi n_{
m e0} T_{
m ref}}{B_{
m ref}^2}$$

Features in

- bootstrap fraction $\propto \beta$
- fusion reaction fate $\propto \beta^2$
- (kinetic) ballooning threshold
- magnetic fluctuations and transport

β scalings of confinement time differ:

- **JET** '04: no β dependence
- ASDEX '07: $\propto eta^{-1}$
- **JET '08**: $\propto \beta^{-1.4}$

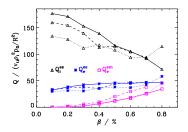
But: fixing parameters difficult

 $\begin{array}{c} \beta \text{ Scans} \\ \text{Magnetic Fluctuation Strength} \\ \text{Magnetic Stochastization} \\ \text{Parallel Magnetic Fluctuations} \end{array}$

GENE and Previous Results

The GENE code www.ipp.mpg.de/~fsj/gene

- nonlinear gyrokinetic equations
- multiple fully kinetic particle species
- collisions and electromagnetic effects
- linear Eigenvalue solver


M.J. Pueschel

- radially local and nonlocal modes
- open source

Previous gyrokinetic simulations:

Jenko 2001, Parker 2004, Dannert 2004, Candy 2005, Pueschel 2008

Good agreement:

Cyclone Base Case Density Gradient Driven TEM Case Pure ITG Case

1 β Scans

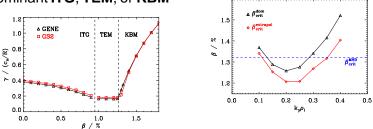
- Cyclone Base Case
- Density Gradient Driven TEM Case
- Pure ITG Case

2 Magnetic Fluctuation Strength

3 Magnetic Stochastization

4 Parallel Magnetic Fluctuations

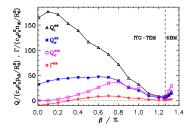
Cyclone Base Case Density Gradient Driven TEM Case Pure ITG Case

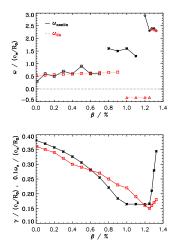

Growth Rates and KBM Onset

Linear analysis

(here: $k_y = 0.2$): depending on β , one gets dominant **ITG**, **TEM**, or **KBM**

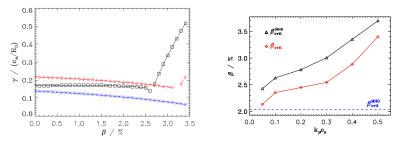
KBM threshold:


destabilization at β_{crit}


- Iminimal β_{crit} at nonlinear transport peak
- gradient dependence: only ω_{Ti} significant, β_{crit} increases strongly for low values, exceeds β_{crit}^{MHD}

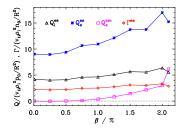
Cyclone Base Case Density Gradient Driven TEM Case Pure ITG Case

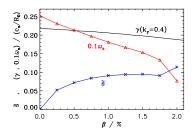
Nonlinear Transport Levels


 \Rightarrow regimes not same as linear; high- β transport drop: mode interaction (Merz 2008) and zonal flows

Cyclone Base Case Density Gradient Driven TEM Case Pure ITG Case

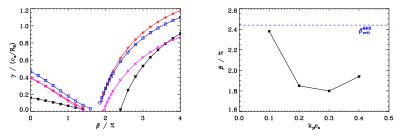
Growth Rate and KBM Onset


Density gradient driven trapped electron mode:


- KBMs appear first at lowest k_y
- no KBMs appear in the MHD stability regime

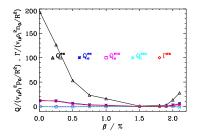
Cyclone Base Case Density Gradient Driven TEM Case Pure ITG Case

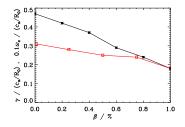
Transport and Zonal Flows


⇒ different behavior: slight decrease linearly, increase nonlinearly KBM threshold: same as linear threshold **Zonal flows** are able to bridge the linear-nonlinear gap

Cyclone Base Case Density Gradient Driven TEM Case Pure ITG Case

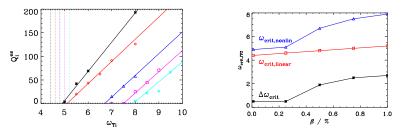
Growth Rate and KBM Onset


Pure ITG scenario ($\omega_{Te} = 0$), designed to have gap at intermediate β between ITG and KBM


 \Rightarrow same as for Cyclone, except for missing TEM regime

Cyclone Base Case Density Gradient Driven TEM Case Pure ITG Case

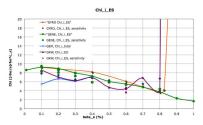
Transport and Zonal Flows


 \Rightarrow much stronger decline nonlinearly with β , KBM onset at the same β_{crit} **Zonal flow** impact on the transport curve:

Sufficient to explain drop?

Cyclone Base Case Density Gradient Driven TEM Case Pure ITG Case

Dimits Shift Study


 \Rightarrow The **nonlinear upshift** of the critical gradient is **increased** for rising β values

Are zonal flows sufficient to explain this effect? (work in progress) Note: one single runoff case was found

Cyclone Base Case Density Gradient Driven TEM Case Pure ITG Case

Transport Runoff

CBC runoff ($\beta \approx 0.85\%$): no saturation, transport at smallest k_y Benchmark effort of gyrokinetic codes underway (Bill Nevins):

⇒ **good agreement** on runoff threshold GENE findings: "stable" region around $\beta \sim 1.2\%$ How to avoid: initial condition; β ramp-up How not to avoid: larger box, higher resolution

1 β Scans

- Cyclone Base Case
- Density Gradient Driven TEM Case
- Pure ITG Case

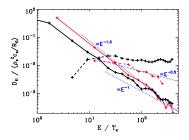
2 Magnetic Fluctuation Strength

3 Magnetic Stochastization

4 Parallel Magnetic Fluctuations

Applications

The radial magnetic field fluctuation B_x influences, e.g.:


Model for electron heat transport along **perturbed field lines**:

Test particle transport model

$$\chi_{\rm e}^{\rm em} = q_0 R \left(\frac{T_{\rm e}}{m_{\rm e}}\right)^{1/2} \langle B_x^2 / B_{\rm ref}^2 \rangle$$

Redistribution of NBI ions in turbulence (Hauff 2009):

$$D_{\rm em} \propto B_x^2 E_{\rm beam}^0$$

Fluctuation Levels

Using β scans to fit straight lines to data:

$$\frac{B_x}{B_0} = \mathcal{C}_x \frac{\beta}{\beta_{\text{crit}}^{\text{KBM}}} \frac{\rho_{\text{i}}}{R_0}$$

 \Rightarrow fluctuations strongest for **ITG** turbulence

Radial Fluctuations

$$C_{x, \text{CBC}, \text{ITG}} \sim 0.8$$

- $C_{x,\mathrm{ITG}}$ ~ 0.8
- $C_{x,\text{CBC,TEM}} \sim 0.4$
 - $C_{x,{
 m TEM}} \sim 0.2$
- $C_{x,MT-Doerk} \sim 0.2$

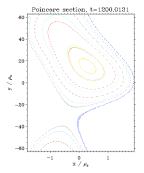
(caveat: CBC has no pure nonlinear TEM)

For the corresponding, C_y , slightly higher results are obtained

1 β Scans

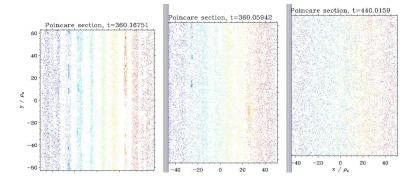
- Cyclone Base Case
- Density Gradient Driven TEM Case
- Pure ITG Case

2 Magnetic Fluctuation Strength


3 Magnetic Stochastization

4 Parallel Magnetic Fluctuations

Field Line Integration


Integration Scheme

- interpolate $B_{x,y}(x, y, z)$
- seed lines at z = 0
- obtain $B_{x,y}(\text{lines})$
- calculate new position at $\Delta z/2$, obtain $B_{x,y}$
- use new field at old position

- integrated with the GENE Diagnostics Tool
- optimized
- benchmarked (Bill Nevins)

Flux Surface Destruction

⇒ flux surfaces **disintegrate** at moderate β nonlinearly, islands are destroyed even at low β stochastization **independent** of runoff, transport **Application**: (micro-)tearing, reconnection

1 β Scans

- Cyclone Base Case
- Density Gradient Driven TEM Case
- Pure ITG Case

2 Magnetic Fluctuation Strength

3 Magnetic Stochastization

4 Parallel Magnetic Fluctuations

B_{\parallel} : Equations

If B_{\parallel} is not neglected, have coupled Φ - B_{\parallel} system (A_{\parallel} remains decoupled):

$$\Phi = \bar{C}_{3}M_{00} - \bar{C}_{2}M_{01}$$
$$B_{\parallel} = \bar{C}_{1}M_{01} - \bar{C}_{2}M_{00}$$
$$M_{00} \sim \sum_{j} \int J_{0}g_{j}d^{3}v$$
$$M_{01} \sim \sum_{j} \int \mathcal{I}_{1}g_{j}d^{3}v$$

Coupling in Vlasov equation via: $\chi = \Phi - v_{Tj}v_{\parallel}A_{\parallel} + \mu T_j^{-1}q_j^{-1}B_{\parallel}$ and via modified FLR corrections to the moments

Independently at high β : equillibrium $j_{0\parallel}$ effects

B_{\parallel} : Transport and Impact

New B_{\parallel} component of the (electromagnetic) particle flux:

$$\Gamma_{j} = -n_{j0} \left((\partial_{y} \Phi) \mathcal{M}_{00} - v_{Tj} (\partial_{y} A_{\parallel}) \mathcal{M}_{10} + T_{j0} q_{j}^{-1} B_{0}^{-1} (\partial_{y} B_{\parallel}) \mathcal{M}_{02} \right)$$

Impact: typically, $\Delta \gamma \sim 10 - 20\%$ is observed near the KBM limit Stellarators ($\beta \sim 5\%$) and astrophysical applications (e.g., $\beta \gtrsim 1$) can have strong B_{\parallel} contributions

Computational effort: $\sim 2\%$ more

What is done in GS2?

Points for Discussion

- **role of zonal flows** at large β (Maxwell stress ...)
- Dimits shift: what causes the sudden change?
- magnetic fluctuations: universality, dependence on parameters
- magnetic surfaces: quantitative approaches, effect on turbulence
- runoff causes, prevention
- \blacksquare B_{\parallel} : impact, magnetic transport definitions