Developments in Millimeter-wave Tokamak Turbulence Measurements

Presented by J.C. Hillesheim

In collaboration with W.A. Peebles, T.A. Carter, T.L. Rhodes, L. Schmitz, A.E. White¹, G. Wang, S. Kubota, and the DIII-D Team²

Department of Physics and Astronomy University of California, Los Angeles ¹ Massachusetts Institute of Technology ² General Atomics, San Diego

Presented at Gyrokinetics for ITER Vienna, Austria

March 15-27, 2010

US DEPARTMENT OF ENERGY Fusion Energy Science Followship ar

Summary

• Multichannel Doppler backscattering diagnostics

- Fast time resolution, high spatial resolution measurements of intermediate-k density fluctuations and ExB flows
- Coupled reflectometry-electron cyclotron emission diagnostic
 - Measurements of the phase angle between low-k electron density and electron temperature fluctuations

DIII-D Parameters

- Typical DIII-D L-mode Parameters
 - R~1.67 m
 - a~0.67 m
 - − B_T(0)~2 T
 - Ip~1-2 MA
 - T_e(0)~2-3 keV
 - $n_e(0) \sim 5 \times 10^{13} \text{ cm}^{-3}$

Principles of Doppler Backscattering

- Radial spatial resolution: $\Delta r < 1$ cm
- Wavenumber resolution: $\Delta k_{\perp}/k_{\perp} \leq 0.4$

Doppler Backscattering can Measure the Propagation Velocity of Turbulence in the Laboratory Frame

- Propagation velocity of turbulent structures results in Doppler shift in lab frame:
 - $v_{Lab} = v_{E \times B} + \widetilde{v}$ $\omega_D \approx k_\perp v_{Lab}$
- Example of Doppler shift changing due to change in neutral beam injection

Momentum input from neutral beam blips

- Short duration neutral beam blips used for MSE CER
- Nearly Identical shots except for direction of second 10 ms beam blip

Example of fast time scale ExB flow and flow shear measurements

Direct Analysis of DBS Phase for High Time Resolution Measurements of Flow Fluctuations

- The phase (referenced to a signal at the launch frequency) of the backscattered electric field can be analyzed directly to study coherent flow oscillations such as GAMs
 - To see this, assume the lab frame velocity is due only to the GAM:

$$v_{Lab} = v_{GAM} \cos\left(\omega_{GAM} t\right)$$

$$\omega_D = k_\perp v_{GAM} \cos\left(\omega_{GAM} t\right)$$

$$\varphi_{GAM}(t) = \frac{k_{\perp} v_{GAM}}{\omega_{GAM}} \sin\left(\omega_{GAM} t\right)$$

- The Fourier transform of the phase will then be sharply peaked at the coherent mode
- Detailed structure of coherent modes can be measured with the multichannel DBS systems at DIII-D

Fast time scale rotation changes observed

 Much better data recently acquired

Coupled reflectometer-electron cyclotron emission diagnostic

- Reflectometry is sensitive to low-k density fluctuations
- ECE is sensitive to low-k temperature fluctuations

Cross phase between temperature and density fluctuations measured in an Ohmic plasma

 Subsequent experiment performed, optimized for comparison to simulation

Phase angle measurements compared to gyrokinetic simulation from GYRO

- Figures from A. E. White et al, Phys. Plasmas 17, 056203 (2010), see paper for details of simulations and experimental conditions
- Quantitative agreement between experiment and GYRO
- Compared to rho 0.55, 0.65, larger change in ExB shear at 0.75

Summary

• Multichannel Doppler backscattering diagnostics

- Fast time resolution, high spatial resolution measurements of intermediate-k density fluctuations and flows
- Coupled reflectometry-electron cyclotron emission diagnostic
 - Measurements of the phase angle between electron density and electron temperature fluctuations