

Progress in Gyrokinetic Simulations of Microtearing Turbulence

Hauke Doerk-Bendig

Thanks to F. Jenko and the GENE development team

Max-Planck-Institut für Plasmaphysik, Garching

Gyrokinetics for ITER Workshop Wien, March 16 2010

A brief history of microtearing research

- 1968: Tearing instability (Furth, Killeen, Rosenbluth)
- 1980: Model for saturation (Drake et al.)

IPP

- **1990**: *µ*-tearing should be **stable** for realistic tokamak scenarios (Connor et al.)
- 1999: Focus on *µ*-tearing in **plasma edge** (Kesner et al.)
- 2003: Linear gyrokinetic simulations (Redi et al., Applegate et al.); Large electron heat transport in spherical tokamaks caused by μ-tearing?
- 2008: *µ*-tearing modes also found in **conventional tokamaks** (linear GK, Vermare et al., Told et al.)

Scope of this work

Problems

- Existence of microtearing instability in Tokamak geometry
- Electromagnetic heat transport caused by microtearing
- Nonlinar saturation of microtearing turbulence

Strategy

- Linear and nonlinear **simulations** using GENE
- Examine impact of steeper gradients, collisional effects...
- Comparison to analytical models

The **GENE** code

Gyrokinetic Electromagnetic Numerical Experiment

Solves gyrokinetic equations on fixed grid in 5D phase space (\Rightarrow continuum code)

- Comprehensive physics
- Massively parallel
- Open source

http://www.ipp.mpg.de/~fsj/gene/

Characteristics of μ -tearing modes

Ballooning representation

IPP

- Fluctuating electrostatic potential $\tilde{\phi}$ extends along field line
- Vector potential Ã_{||} is strongly localized around θ = 0

$\mu\text{-tearing}\xspace$ modes found in

- Spherical tokamaks (NSTX, MAST)
- Conventional tokamaks (ASDEX Upgrade)
- Model geometry: *Circular* (Lapillonne et al. 2009)

Influence of collisions

Microtearing modes exist in the weakly collisional regime!

IPP

Influence of temperature gradients

Microtearing Turbulence Spectrum

Nonlinear

IPP

- Peak at low ky
- Extends to large k_y

Requirements

- Large box
- High radial resolution

Nonlinear microtearing simulations are challenging to perform

Magnetic Field Stochastization

Magnetic field fluctuations of microtearing turbulence leads to field stochastization

Heat Transport in Stochastic Magnetic Fields

Simple model (e.g.Liever 1985) confirmed in collisionless case

Nonlinear Behavior of Microtearing Turbulence

Model by Drake '80

- $\gamma_{
 m L} \sim \textit{v}_{te} \lambda_{
 m mfp} \left(\varrho_{\textit{e}} / \textit{L}_{\textit{Te}} \right)^2 \textit{k}_{\perp}^2$
- $\gamma_{\rm NL} \sim -D_M k_\perp^2$
- $\Rightarrow \delta B/B_0 \sim \varrho_e/L_{Te}$

Gyrokinetic simulations

- Relevant low k regime: $\gamma_{\rm L} \sim 0.18 \frac{R}{L_{Te}} k_y$
- Robust to changes in *β*, ν_c, (*R*/*L_n*), *q*₀, ŝ

Nonlinear saturation mechanism is an open issue

IPP

Problems of Microtearing Simulation

sometimes...

- Peak at lowest k_y
- No saturation of heat flux

Solution

- Larger box?
- Higher resolution?
- Some Physics missing?

Nonlinear microtearing simulations are very challenging to perform

Conclusions

- Microtearing modes can be unstable in conventional tokamaks
- Heat transport can be substantial
- Nonlinear saturation mechanism is an open issue
- Further simulations: System size: global microtearing + ITG

. . .

Microtearing modes may play a role in future tokamak experiments like ITER

Thank you for your attention!

Nonlinear results adiabatic ions

Magnetic fluctuations $B/B_0 \times (L_{T,e}/\rho_e)$ 6 Magnitude 5 $\delta B/B_0 \times (L_{T_e}/\varrho_e) \sim 1$ 3 (Drake) 2 Stronger scaling with $R/L_{T_{e}}$ 0 2 3 5 0 4 $R/L_{T,e}$ 20Heat diffusivity 15 Rapidly increases with $\chi_e(m^2/s)$ $R/L_{T_{a}}$ 10 Nonlinear upshift of the $\mathbf{5}$ **Critical gradient**

0

0

1

2 3

6

5 6

 $3 \quad 4$ $R/L_{T,e}$

 $(R/L_{T_e})_{crit}$

IPP