Progress in Gyrokinetic Simulations of Microtearing Turbulence

Hauke Doerk-Bendig

Thanks to F. Jenko and the GENE development team

Max-Planck-Institut für Plasmaphysik, Garching

Gyrokinetics for ITER Workshop
Wien, March 16 2010
A brief history of microtearing research

- **1968**: Tearing instability (Furth, Killeen, Rosenbluth)
- **1975**: Instability due to ∇T_e: μ-tearing (Hazeltine et al.)
- **1980**: Model for saturation (Drake et al.)
- **1990**: μ-tearing should be stable for realistic tokamak scenarios (Connor et al.)
- **1999**: Focus on μ-tearing in plasma edge (Kesner et al.)
- **2003**: Linear gyrokinetic simulations (Redi et al., Applegate et al.); Large electron heat transport in spherical tokamaks caused by μ-tearing?
- **2008**: μ-tearing modes also found in conventional tokamaks (linear GK, Vermare et al., Told et al.)
Scope of this work

Problems

- **Existence** of microtearing instability in Tokamak geometry
- Electromagnetic **heat transport** caused by microtearing
- **Nonlinear saturation** of microtearing turbulence

Strategy

- Linear and nonlinear **simulations** using GENE
- Examine impact of steeper gradients, collisional effects...
- Comparison to **analytical models**
The GENE code
Gyrokinetic Electromagnetic Numerical Experiment

Solves gyrokinetic equations on fixed grid in 5D phase space
(⇒ continuum code)

- Comprehensive physics
- Massively parallel
- Open source

http://www.ipp.mpg.de/~fsj/gene/
Characteristics of μ-tearing modes

Balooning representation

- Fluctuating **electrostatic potential** $\tilde{\phi}$ extends along field line
- **Vector potential** \tilde{A}_\parallel is strongly localized around $\theta = 0$

μ-tearing modes found in

- Spherical tokamaks (NSTX, MAST)
- Conventional tokamaks (ASDEX Upgrade)
- Model geometry: *Circular* (Lapillonne et al. 2009)
Influence of collisions

- Growth rate depends on collisionality ν_c only moderately
- Agreement with Applegate 2007

Microtearing modes exist in the weakly collisional regime!
Influence of temperature gradients

Ions
- \(R/L_{Ti} \) not important

Electrons
- \(\frac{R}{L_{Te}} = -\frac{R}{T_e} \frac{\partial T_e}{\partial x} \) crucial
- \(\left(\frac{R}{L_{Te}} \right)_{crit} \sim 1.5 \)

Existence of a critical electron temperature gradient confirmed
Nonlinear microtearing simulations are challenging to perform.
Magnetic field fluctuations of microtearing turbulence leads to field stochastization.
Heat Transport in Stochastic Magnetic Fields

\[\chi_{em} = v_{te} D_M \]
\[D_M = L_0 \left(\frac{\delta B}{B_0} \right)^2 \]

- Collisionless case
 \[L_0 = q_0 R \]
- Collisional case
 \[L_0 = \lambda_{mfp} = \frac{v_{te}}{\nu_e} \]
 \[(Wong \text{ et al., PRL 2007)}\]

Simple model (e.g. Liever 1985) confirmed in collisionless case
Nonlinear Behavior of Microtearing Turbulence

Model by Drake ’80

- \(\gamma_L \sim v_t e \lambda_{mfp} (\rho_e/L_{Te})^2 k_{\perp}^2 \)
- \(\gamma_{NL} \sim -D_M k_{\perp}^2 \)
- \(\Rightarrow \delta B/B_0 \sim \rho_e/L_{Te} \)

Gyrokinetic simulations

- Relevant low \(k \) regime:
 \(\gamma_L \sim 0.18 \frac{R}{L_{Te}} k_y \)
- Robust to changes in \(\beta, \nu_c, (R/L_n), q_0, \hat{s} \)

Nonlinear saturation mechanism is an open issue
Problems of Microtearing Simulation

sometimes...

- Peak at lowest k_y
- No saturation of heat flux

Solution

- Larger box?
- Higher resolution?
- Some Physics missing?

Nonlinear microtearing simulations are very challenging to perform
Conclusions

- Microtearing modes can be unstable in conventional tokamaks
- **Heat transport** can be substantial
- Nonlinear **saturation mechanism** is an open issue
- Further simulations:
 - System size: global microtearing + ITG
 - ...

Microtearing modes may play a role in future tokamak experiments like ITER
Thank you for your attention!
Nonlinear results adiabatic ions

Magnetic fluctuations

- Magnitude
 \[\frac{\delta B}{B_0} \times \left(\frac{L_{Te}}{\rho_e} \right) \sim 1 \]
 (Drake)
- **Stronger scaling** with \(R/L_{Te} \)

Heat diffusivity

- Rapidly increases with \(R/L_{Te} \)
- Nonlinear upshift of the **Critical gradient** \(\left(\frac{R}{L_{Te}} \right)_{\text{crit}} \)