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Motivation: pedestal = transport barrier

• Higher energy content

• Larger energy confinement time

Existence of the pedestal associated with decreased
transport and turbulence

Density pedestal results in strong radial electric field
and electrostatically confined banana regime ions

Pedestal width w ~ ρpol
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Particle orbits in pedestal

ExB drift ~ viρ/w ~ viρ/ρpol << v||, but geometry makes it
comparable to poloidal projection of v||

Strong radial electric field:   
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Overview of Pedestal Topics
• Version of gyrokinetics useful in pedestal: convenient for

pedestal widths w ~ ion  poloidal gyroradius ρpol

• Neoclassical ion heat flux and ion flow in pedestal
retaining finite radial electric field effects: must treat finite
drift orbit effects



Gyrokinetic variables

R

ˆθ

ˆζ

Canonical angular momentum

  gyration  drift

Toroidal angle  ζ*

Poloidal angle  θ*

Total energy  E

Magnetic moment  µ

Gyrophase  ϕ
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Axisymmetric gyrokinetic equation
Axisymmetric (∂/∂ζ =0) gyrokinetic equation

Steady state (∂/∂t = 0) to leading order in ρpol:
transit averaging in banana regime

Are there non-Maxwellian solutions in
pedestal?

Entropy production analysis: no!
G. Kagan, P.J. Catto, Plasma Phys. Controlled Fusion 50, 085010 (2008)
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〈C{f∗}〉 = 0
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Pedestal ion  temperature variation

T, η, ω  must vary slowly compared to ρpol

Non-isothermal modifications can only enter to next order
in the Bp/B expansion

In the banana regime so f*(ψ*,E, µ)

The only Maxwellian possible is

where η, ω, and T are constants & n is Maxwell-Boltzmann
with 
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Physical  interpretation

In the core gradients are so weak ion
departures from a flux surface are

unimportant - can consider any given flux
surface a closed system

In the pedestal, gradients are as large as
1/ρpol  so drift departures affect the

equilibration of neighboring flux surfaces -
the entire pedestal region is a closed

system (rather than individual flux surfaces)

flux surface

ion
trajectory

ρpol
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Pedestal pressure balance

Radial electron pressure balance:

subsonic
pedestal
(w ~ρpol)

pedestal electric field inward for subsonic ion flow

Thus, the electric field balancing the 1/ρpol density gradient
requires a stationary ion Maxwellian & large electron flow

Radial ion pressure balance using       gives  
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ωe = −c[∂Φ/∂ψ − (en)−1∂pe /∂ψ]
Electron pressure gradient adds to radial electric field making
ωeR ~ vi  so that Jped ~ envi & co-current



Pedestal  orderings  &  ExB drift effects

Drift departure ρpol is of order pedestal width w

Finite drift orbits effects enter in leading order
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Ze∇Φ ~ T/ρpolEstimating    we note

where      is the ExB drift velocity

Poloidal streaming ~ ExB

Orbit localization from ε << 1
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Ion motion for ε = a/R << 1

using E, µ  and ψ* invariance while keeping Φ′ find

ExB energymagnetic
dipole energy

orbit squeezing
S = 1+cI2Φ’’/BΩ

S>0 (S<0) trapped particles outboard (inboard)
Denote equatorial plane crossing by “0” then

Assume a quadratic potential well and expand about ψ*-Iu/Ω
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with κ2 = 1 the trapped-passing boundary & u= cIΦ’/B
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Trapped particle fraction
ExB drift:

i) Increases effective potential
well depth: µ = 0 trapped by Φ
poloidal variation at fixed ψ∗

ii) Shifts the axis of symmetry of
the trapped particle region -
fewer trapped!

Trapped fraction decays
exponentially if u= cIΦ’/B > vi
Neoclassical and polarization
phenomena strongly modified

Recall u ≈ (ρpol/ρ)vE >> vE  so particle dynamics qualitatively
changed by a subsonic ExB drift
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Neoclassical ion heat flux & parallel flow

Need a model for the collision operator - must
keep energy scatter as well as pitch angle scatter

Solve for g

Calculate quantities of interest by taking moments
of the distribution function
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Collisions in the pedestal

Pitch-angle scattering is not sufficient to retain
transitions across the trapped-passing boundary!

Kagan & Catto, to appear in PPCF

vλ�
vE�

0

0

energy scatter
pitch
angle
scatter

u/vi

v⊥/vi

v||/vi

€ 

λ =
µB0 + u02

W
=

κ2

κ2 + 2ε

Convenient variables
are λ and W:

€ 

W(1− λB/B0 ) = 1
2 S(v|| + u)

2

€ 

∇vλ

€ 

∇vW



Neoclassical parallel ion flow

J

Localized portion g - h higher order in ε
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No orbit squeezing effect

J changes to Pfirsch-Schluter
sign at u/vi ~ 0.6

May help explain C-Mod flow
measurements in pedestal

More pedestal bootstrap current

conventional
result



Pedestal impurity flow

J

Change in poloidal ion flow alters impurity flow

For Pfirsch-Schluter impurities & banana ions:
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C-Mod pedestal flow:

€ 

Vi
pol ≈ −

7cIBpol
6eB02

∂Ti
∂ψ
J( u
vi
)

Pfirsch-Schluter: ~ agree
Banana: problem - need Er

Marr et al to appear PPCF



Pedestal ion heat flux             
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Modified ion flow :
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Evaluating:
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Radial ion heat flux and trapped
population become
exponentially small for u/vi > 1

Ion heat flux more
sensitive to Φ′ than Φ′′



Summary
• Pedestal ions nearly isothermal (ρpol∇Ti «1): subsonic ions

electrostatically confined + magnetically confined electrons

• Banana regime ion heat flux reduced & poloidal ion flow can
change sign in the pedestal due to Φ′ as in C-Mo


