

The Spatiotemporal Structure of Geodesic Acoustic Modes in the Edge Plasma of TEXTOR

S. Zoletnik¹, L. Bardoczi¹, G. Anda¹, D. Dunai¹, G. Petravich¹, D. Réfy⁴,

A. Krämer-Flecken², I. Shesterikov⁵, S. Soldatov³, Y. Xu⁵ and the TEXTOR Team²

¹ KFKI RMKI, Association EURATOM, Budapest, Hungary

² Institut für Energieforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Association EURATOM, Trilateral Euregio Cluster, Jülich, Germany

³ Department of Applied Physics, Ghent University, Rozier 44, 9000 Gent Belgium

⁴Budapest University of Technology and Economics, Association EURATOM, Hungary

5Laboratory for Plasma Physics, Ecole Royale Militaire /Koninklijke Militaire School, Brussels, Belgium

Abstract

The spatial and temporal structure of Geodesic Acoustic Modes (GAMs) in the r/a=0.9...1 radial range of Ohmically heated TEXTOR plasmas is studied via spectral and correlation analysis involving 3 independent diagnostics: reflectometry, probes and Li-beam. The GAM frequency changes continuously as a function of radius. The longrange correlation of the velocity modulations clearly obeys to m=0, n=0. Similarly to other experiments the radial phase structure shows liner phase shift, but correlation analysis reveals a more complicated structure. Empirical modelling of the correlations indicates that radially extended GAM excitations are needed to explain the results.

Turbulence properties at the edge of TEXTOR

Edge plasma turbulence is dominated by a broadband mode, also called quasi-coherent mode (QC)[5].

Power spectrum of Li-BES #9 Typical power spectrum 7×10⁻¹⁰ QC mode of Li-BES channel 6×10⁻¹⁰ 5×10⁻¹⁰ Shows QC mode and Photon+amplifier 4×10⁻¹⁰ GAM signal from noise 3×10⁻¹⁰

Radial structure

The time delay signals contain inevitable broadband noise originating from the calculation method. This noise is radially correlated due to the radial correlation of turbulence and Li-beam atomic physics.

To avoid the effect of noise time delay functions from different diagnostics are used: measurement points are not in the same flux tube \rightarrow noise effect of turbulence is uncorrelated, correlation functions and crossphase indicate radial structure of global

<u>GAMs are measured through different effects:</u>

- Potential modulation measured by floating potential probes[1]
- GAM density component is seen by reflectometry at $\theta \approx 100^{\circ}$ [2]
- Through the movement of ambient turbulence in all 3 diagnostics

The poloidal-radial resolution of diagnostics as used in this analysis:

Reflectometry:

- 5 poloidally displaced antennas each in
- 2 cross-sections
- 1 antenna with step-tunable frequency

Probes:

•Multi-pin head at fixed position Ion saturation and floating probe signals

Li-beam[4]:

- 14 channels with 1 cm radial separation
- 2.5 MHz sampling, SNR: ~50
- Beam hopping for quasi-poloidal

TEXTOR edge plasma

possible. ACFM has proven to be a suitable method in the

GAM frequency

In the r/a=0.85...1.0 range GAM frequency increases continuously from 8-10 kHz at the LCFS to 15-17 kHz at r/a~0.85.

Deeper in the plasma reflectometry indicates co-existence of multiple GAM rings.

Long-range correlation of poloidal velocity modulations (poloidal-toroidal GAM structure)

Coherency between Li-beam and reflectometry $\tau_{D}(t)$ signals $\tau_{\rm D}(t)$ signals are calculated from reflectometry phase signals and Libeam signals.

Coherency and crossphase of one reflectometry $\tau_{D}(t)$ signal with all Li-beam $\tau_{\rm D}(t)$ signals: 2σ confidence level Shot 110283, top reflectometry antenna

At the highest coherency the phase is close to 0

statistics but more difficult to interpret

Signature of GAM propagation to LCFS?

–200 0 200 Time delay [µs] -400

Empirical modelling of radial structure

An attempt was made to qualitatively model the measured correlation function at r/a=0.9-0.95:

• Random GAM excitation at each radius, radial correlation length of excitation is a free parameter

• Velocity signal generated by convolving excitation with local kernel function

(modulated sinusoidal) • GAM frequency is linear function of radius • Infinite lifetime spatial (poloidal) turbulence structure is moved with modeled local GAM velocity. Broadband detector noise added.

• $\tau_{\rm D}(t)$ and correlation calculated from simulated signals using the same procedure as for the experiment

Modeled experiment Excitation Excitation with no radial correlation Few cm radial correlation is -200 0 200 Time delay [µs] Excitation with finite radial correlation

-400

needed in excitation to

Conclusions:

from phase delay between

bserva	tior	

beam up

beam down

Li-beam

Observation channels

till

resolution at 417 kHz

Studies:

Poloidal-toroidal structure determination:

Coherency/crossphase analysis of all 3 diagnostics Radial structure in r/a=0.9-1.0:

Li-beam using other diagnostics as reference.

References

[1] Y. Xu, et al., 36th EPS Conference on Plasma Phys. Sofia, ECA Vol.33E, P-1.191 (2009) [2] A. Krämer-Flecken, et al. Plasma Phys. Control Fusion 51 015001 (2009) [3] S. Zoletnik, et al., 36th EPS Conference on Plasma Phys. Sofia, ECA Vol.33E, P-1.192 (2009) [4] G. Petravich, et al. to be submitted to Rev. Sci. Instrum [5] A. Krämer-Flecken, *et al. Nucl. Fusion* 4**4** 1143 (2004) [6] T. Ido, et al., Nucl. Fusion **46** 512 (2006) [7] G. McKee, et al., Phys. Plasmas **10** 1712 (2002)

The crossphase between the Li-beam $\tau_{\rm D}(t)$ signal at the highest coherency and all reflectometry $\tau_{\rm D}(t)$ signals.

E OWWW MAN MAN AN MAN WAS

=67.5°, top antennas	$\Delta \phi = 90^{\circ}$, equatorial anten
gnal type: phase Ref: 110281_bes-7_td	110281 Signal type: comp Ref: 110281_b
	0.5
	E [++
Δθ=5.75°	- ^{0.5} Δθ=5.75°
B C D E	B C D E

 $\tau_{\rm D}(t)$ signal from

Li-beam

nas

Crossphase is independent of both poloidal and toroidal angles.

Coreherency with probe velocity signals

Coherency and crossphase between probe time delay signal (two-point TDE) and Li-beam time delay signal at LCFS.

Crossphase is 0 at GAM frequency

Velocity modulations have clear

m=0, n=0 structure

Apparent GAM propagation is consequence of GAM frequency scaling and radially correlated excitation. An apparent GAM k, can also be calculated.

Decaying GAMs cannot reproduce the slope of the measured correlation functions. Need to reverse time in modeling to

reproduce experimental correlation function.

