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Outline

• Tearing modes in magnetised plasmas
– The basic physics of drift-tearing modes

• Why are we interested?

• The challenges of modelling drift-tearing modes

• Summary



Magnetic geometry
• We adopt a “sheared slab” geometry as our reference state
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Magnetic geometry
• We adopt a “sheared slab” geometry and introduce a magnetic island
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• We consider the responses of the electrons and ions to this magnetic island,
and the associated, self-consistent potential, ϕ

• The current perturbation evaluated from these responses determines whether
drift effects amplify or suppress islands
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The basic formalism:
The concept of Δ'

• Away from the rational surface,     is determined by the equations of
ideal MHD: a second order differential equation

–  Predicts that ψ has a discontinuous derivative at the rational surface r=rs
–  This is conventionally parameterised by Δ′:

–  Δ' characterises global properties of the equilibrium (in particular the free
energy in the current density gradient)
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The basic formalism:
The layer

• The discontinuous derivative arises because of currents, localised
around the rational surface, where ideal MHD breaks down

• Ampere’s law for long, thin islands:

•  Integrate this over a period in ξ and out to a large distance, l, from
the rational surface (w<<l<<rs):

•  This is our basic tearing mode equation
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Classes of tearing modes

• We have shown that the basic tearing mode equation is:

• The left hand side represents contributions from the global
equilibrium profiles
– Indeed Δ' represents the free energy available in the equilibrium current

profile to drive the tearing mode

• The right hand side represents currents localised in a  narrow layer in the
vicinity of the rational surface

• Different classes of tearing mode can be thought of as arising from
different models for the localised current density, J||
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Basic Rutherford theory

• Consider the Ohmic current due to the induced electric field as the
island evolves, and an electrostatic piece

•  In the absence of perpendicular drifts, perpendicular currents are
zero, and so we have ∇⋅J= ∇||J||=0

•  Thus, by averaging around flux surfaces, we eliminate ϕ to derive

•  Recall our basic equation:

•  Relating ψ to the island width, w, we then arrive at Rutherford’s eqn:
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Drift magnetic islands

• A convenient picture is provided by considering the ExB drift

• For island width w comparable to the ion Larmor radius:
– ions experience a gyro-averaged electric field
– electrons experience the local electric field
– the differing effective ExB drifts provides a perpendicular current: the ion

polarisation current

•  The divergence of this perpendicular current is not zero

•  This drives a parallel current, which influences tearing mode stability

•  Important for islands with a width ~few ρi
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Motivation:
Why are we interested?



Why are we interested?
1. Transport

• Chains of small scale magnetic islands on adjacent rational surfaces
can result in stochastic magnetic field regions, and enhance electron
transport
– Indeed, the self-consistent electrostatic potential associated with the

island structures could also drive particle and ion thermal transport in
principle



Why are we interested?
2. MHD

• In a tokamak, the perturbation in the bootstrap current can provide an
additional drive (ie the neoclassical tearing mode, or NTM)

– Arbitrarily small islands are amplified to large width:

– An effective (soft) limit on the pressure
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• Experimentally, there is observed
to be a threshold for island growth,
w~ ion orbit width
– Drift effects are important to

understand this threshold

Z. Chang et al, PRL 1995



Why are we interested?
3. ELM suppression

• Periodic eruptions of plasma, called ELMs, are driven by the strong
edge pressure gradient
– If uncontrolled, they would cause excessive erosion in ITER
– DIII-D has demonstrated ELM control using magnetic perturbations from

coils to degrade the edge confinement and reduce the pressure gradient

• How does the plasma respond to magnetic perturbation from the coils
– Do they create small islands, or does the plasma screen/heal them?

See, for example,
T Evans Nature Phys
(2006)



Calculating the Plasma Response:
The challenges of drift-tearing mode theory



The particle response

• We employ the non-linear gyro-kinetic equation for the particle
responses to the imposed magnetic perturbation,
– Perturb about a Maxwellian reference state FM(x)
– Work in island rest frame, so total potential Φ=−Exx + ϕ
–  Nonlinear, non-adiabatic part of response
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The electrons
• The electrons are characterised by fast parallel velocities
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– The response is dominated by the parallel dynamics
• This can be integrated, and combined with the adiabatic piece to give

the electron density:

• Note that this can be written in the more familiar form:

– i.e. adiabatic, and constant on the perturbed field lines of the island
– So h(ψ) represents the density profile

⇒undetermined as we have no transport physics
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• The ion response is dominated by the cross-field drifts:

The ions
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• We can write the solution in terms of the linear response and an
arbitrary function of the total potential: Φ = −Exx + ϕ
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• Quasi-neutrality then provides an equation for ϕ (ρi<<w)

• The two profiles h(ψ) and K(Φ) are determined by transport physics
– we can define a transport model and determine h(ψ) and K(Φ), or
–  we can adopt models for h(ψ) and K(Φ), consistent with b.c.s
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• Self-consistent models for K(Φ) have been considered, but generally
one simply adopts K=0

• Turn to h(ψ):
–  perturbatively introduce a heuristic model for diffusion into the electron

equation

The transport profiles
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• Self-consistent models for K(ϕ) have been considered, but generally
one simply adopts K=0

• Turn to h(ψ):
–  perturbatively introduce a heuristic model for diffusion into the electron

equation

– Averaging over the island flux surfaces provides:

– Provides h(ψ) in terms of elliptic integrals:

–  h(ψ) is zero inside the island (Ω<1)
– dh/dψ is discontinuous at the separatrix (Ω=1)

The transport profiles
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∇⋅J=0 provides our equation for J||

• The current perturbation is derived from the equation ∇⋅J=0
–  This, in turn, is derived by integrating the electron and ion gyrokinetic

equations over velocity space and summing (imposing quasi-neutrality)

• After some algebra, one finds:

•  This can be integrated to provide the current density to be inserted in
our island evolution equation:
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The “full” system: and a twist

• Note that our quasi-neutrality condition requires

– We then have

– In addition

• As the derivative of h(ψ) is discontinuous at the island separatrix,
there is a δ-function contribution to the current density there
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The separatrix layer
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• A quantitative calculation of J|| in each region is essential to describe
the island evolution accurately

– the layer is a major challenge

• There are two contributions to J||

– a ~(ρs/w)2 contribution from the region
outside the separatrix layer
– a very large current sheet at the separatrix

• These contributions
– oppose each other
– make a comparable (but opposite)
contribution to the island evolution



ωE/ω*e

Island suppressed

Island enhanced

The separatrix layer:
FLR effects

• Ion Larmor radius effects cannot (in general) be treated
perturbatively in the layer

– Full FLR must be retained to treat the layer region accurately

Waelbroeck, Connor, Wilson PRL (2001)

• Note that whether islands are enhanced or suppressed by FLR effects depends on
the propagation frequency, ωE

–This is treated as an input parameter here

James, Wilson PPCF (2006)
ρi/w

Electron drift wave
resonance



The separatrix layer:
Electron drift wave resonance

Consider our equation for the potential (with K(ϕ)=0)

– The left hand side is simply the standard linearised eigenmode
equation for electrostatic modes (electron drift wave and ITG modes)
– The electron response to the magnetic perturbation of the island (right
hand side) provides a drive
– The electron drift wave is driven at a frequency 0 < ω(kx) < ω*e

– The separatrix layer has a range of kx, one of which drives a resonance
with the electron drift wave for 0 < ω(kx) < ω*e
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Electron drift wave resonance:
The potential is not localised

• Recall that in the ion gyrokinetic equation, we ordered ωE>>k||v||

– Thus the ion Landau resonance, which is far from the island, is ordered
out of the problem when the potential is localised (ie no drift wave
resonance).

Ion Landau
resonance

ωE=k||v||

ϕ



Electron drift wave resonance:
The potential is not localised

• Recall that in the ion gyrokinetic equation, we ordered ωE>>k||v||

– Thus the ion Landau resonance, which is far from the island, is ordered
out of the problem when the potential is localised (ie no drift wave
resonance).

•The electron drift wave propagates out to large distance from island
– This coupling to the electron drift wave allows the ion Landau
resonance to be tapped (likely influencing ωE through shear damping)

Electron drift wave
transfers energy to
large distance

Energy
damped by
ion Landau
resonance

ωE=k||v||

ϕ



• Recall that the discontinuity in h(ψ) is created by the rapid transport
of electrons along the island field lines

– we treated diffusion perturbatively (via a heuristic model)
– in the layer this treatment is invalid: parallel streaming and
cross-field diffusion balance

– This system has been solved (Hazeltine, Catto and Helander (1998); James,
Wilson and Connor (2010))

Resolving the separatrix layer:
Cross-field transport
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Resolving the separatrix layer:
Influence on island evolution

• A proper treatment of the separatrix layer has a significant influence
on its contribution to the island evolution

Unresolved layer

Resolved
layer

Electron drift
wave region

ηi=0
ρi/w=1

• Understanding of the layer region
remains incomplete

– E|| is also likely large here
– Is the large current density in this region
stable?

• It remains crucial to determine the net
contribution of the outer + layer current
density

ωE/ω*e



The physics of K(ϕ) and ωE

• We can think of K(ϕ) as representing the flow profile in the vicinity of
the island

• ωE, on the other hand, characterises a global property of the flow

• Both must be determined within a self-consistent model, and require
dissipation

– collisional dissipation (viscosity)
– non-ambipolar turbulent transport processes
– Landau resonances

• We have seen how the ion Landau resonance could be tapped via
the electron drift wave

– what about the electron Landau resonance?



The electron Landau resonance

• Recall the approximations made for the electron response:
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• Thus

•This means that the electron distribution function is constant on
surfaces of constant y, rather than ψ
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• Let us re-introduce the reference flow, ωE, to provide the Landau
resonance
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Electron Landau damping is enabled
through collisions

• Compare magnetic flux (ψ) surfaces with drift (y) surfaces:
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Constant ψ

•The electron distribution function is
flattened across the Landau resonance

• This removes Landau damping

• Retaining a level of collisions maintains
a gradient across the Landau resonance,
and restores the Landau damping

• Collisions may play an important role,
even when they are rare

Connor and Wilson, Phys Plas (1995)



Toroidal effects

• The main influence of the toroidal geometry is the presence of
trapped particles:

– the bootstrap current perturbation, driving neoclassical tearing
modes (which we shall not address)
– the impact on the ion polarisation current

• A “neoclassical polarisation current” is generated due to the finite ion
banana width

– trapped ions experience orbit-averaged ExB drift
– this provides a neoclassical polarisation current ~ ε1/2 (ε1/2ρθi/w)2

– In a “collisional” regime νi/ε>ωE (but ν*<<1) the polarisation
current is communicated to the passing particles, and amplified by
a large factor ~q2/ε3/2



• The neoclassical polarisation current has a strong dependence on
collision frequency

Neoclassical polarisation current

Fit neglecting (νi/εω)1/2 correction~ (νi/εωE)1/2 

K Imada, in preparation

Mikhailovskii (2000)

Fluid limit (Smolyakov, et al, 1995)

Kinetic limit 
(Wilson et al, 1996)



Summary
• Finite ion Larmor radius effects influence magnetic island evolution

• The theory is incomplete, complicated due to the existence of a narrow
layer in the vicinity of the separatrix:

– FLR effects crucial
– Cross-field diffusion competes with parallel streaming
– Parallel electric field important (not fully addressed)
– Coupling to electron drift waves

• A complete theory must self-consistently determine flow profiles
around the island and the propagation frequency, ωE

• Toroidal geometry presents additional challenges for gyrokinetic codes
– resolving a boundary layer between trapped and passing particles Δ
v/vthi~(νi/εωE)1/2 is necessary (usually)

• Whether FLR is stabilising or destabilising remains unresolved
– if it were destabilising, however, tokamak confinement would be terrible!


