Measurement of Electron Temperature Fluctuations on DIII-D

A. E. White Massachusetts Institute of Technology, Plasma Science and Fusion Center

L. Schmitz,^{a)} T.L. Rhodes,^{a)} W.A. Peebles,^{a)} G.R. McKee,^{b)} G. Wang^{a)}, C. Holland,^{c)}, J. Candy,^{e)}, T.A. Carter,^{a)} J. C. Hillesheim^{a)} M.E. Austin,^{d)} K.H. Burrell,^{e)} J.C. DeBoo,^{e)} E.J. Doyle,^{a)} R. Prater,^{e)} M.W. Shafer,^{f)} G.M. Staebler,^{e)} G.R. Tynan,^{c)} R.E. Waltz,^{e)} and the DIII-D Team,^{e)}

^{a)}University of California-Los Angeles, Los Angeles, California, USA
 ^{b)}University of Wisconsin-Madison, Madison, Wisconsin, USA
 ^{c)}University of California-San Diego, La Jolla, California, USA
 ^{d)}University of Texas, Austin, Texas, USA
 ^{e)}General Atomics, P.O. Box 85608, San Diego, California, USA
 ^{f)}Lawrence Livermore National Laboratory, Livermore, California, USA

Turbulence plays a central role in cross-field transport of energy, particles and momentum in magnetically-confined plasmas

c _s /a	(kHz)	200-400
γ_{ExB}	(c _s /a)	0.03-0.08
ν_{ei}	(c _s /a)	0.1 – 0.5
β_e		0.001
$ ho^*$		0.001-0.003

DIII-D Tokamak R = 1.66 m a = 0.67 m $B_T = 2.1 T$ $I_P = 1.2 MA$ $n \sim 4x10^{19} m^{-3}$

DIII-D Employs Suite of Fluctuation Diagnostics to Measure Wide Range of Turbulence Scales and Characteristics

Fluctuation diagnostics at DIII-D cover a wide range of spatial scales, relevant for ITG, TEM and ETG turbulence

Cannot measure turbulent flux

$$Q_{e}^{fl} = 3/2nk_{B}T_{e}/B_{t}(\langle (T_{e}/T)E_{\theta} \rangle + \langle (n/n)E_{\theta} \rangle)$$

Summary of Results

•In ITG-dominant L-mode plasmas, long wavelength ($k_{\theta}\rho_{s} < 0.5$) \tilde{T}_{e}/T_{e} are similar to amplitude to long wavelength \tilde{n}/n (0.5-2.0%, increasing with radius)

•After H-mode transition, core electron temperature fluctuations are significantly reduced; increased ExB shearing of ITG turbulence

•In experiments where TEM drive/thermal transport increased using ECH to modify plasma profiles, \tilde{T}_e/T_e and \tilde{n}/n respond differently • \tilde{T}_e/T_e increases (50-60%), \tilde{n}/n little to no change (< 5-10%)

•Nonlinear GYRO simulations predict increases in transport as TEM drive increases associated with

•Large change in T_e/T_e , smaller changes in \tilde{n}/n

•Change in cross-phase angle between \tilde{n} - $\tilde{\phi}$

•The change \tilde{n} - \tilde{T} phase angle is measured and is in good agreement with predictions from GYRO; ongoing modeling effort required

Correlation Electron Cyclotron Emission (CECE) Diagnostic Measures Local, Low-k Electron Temperature Fluctuations

CECE measures power spectrum and fluctuation levels \tilde{T}_e/T_e with typical time averaging $\delta t = 50-400$ ms

Reduction of electron temperature fluctuations in H-mode

Quiescent H-mode Experiments Show Reduction in Core Electron Temperature Fluctuations

•QH-mode experiments: Bt~ -2 T, Ip ~1.2 MA, counter beams

Core Turbulence Reduction in Quiescent H-mode Experiments Suggests Contribution to Heat Flux in L-mode

Simultaneously measured electron temperature fluctuations (CECE) and density fluctuations (BES)

Beam Emission Spectroscopy (BES) Diagnostic Measures Local Density Fluctuations at Same Radius as CECE

The Profile of Temperature Fluctuations in L-mode Is Compared to the Profile of Density Fluctuations

Shot parameters, 128913

$$-I_{p} = 1 MA$$

$$-\dot{B}_{T} = 2.1 \text{ T},$$

- 2.5 MW beam power (L-Mode)
- upper single null

Use series of repeat discharges to measure profiles of T_e/T_e and \tilde{n}/n

Stationary, sawtooth-free I-mode

-- The ITG is most unstable mode

1300-1700 ms used in analysis

Plasma Profiles, Plasma Frequencies, and Optical Depth in a Typical L-mode Plasma of Interest

- 2nd Harmonic ECE is far from being cut-off by RH wave
- Plasma is optically thick ($\tau > 4$)in region of interest
- Density fluctuations will not contribute to temperature fluctuation signal

CECE diagnostic scanned between 0.3 < r/a < 0.9

Temperature and Density Fluctuations Have Similar Spectra and Normalized Fluctuation Amplitude Profiles

Synthetic Diagnostics That Model the BES and CECE Sample Volumes are Used to Spatially Filter the Raw GYRO Data

CECE sample volume: Antenna pattern and natural linewidth

BES sample volume: Collection optics, neutral beam/sight-line geometry, neutral beam cross-section intensity and the finite atomic transition time of the collisionally excited beam atoms [Shafer RSI 2006]

GYRO Predicts \tilde{T}_e/T_e and \tilde{n}_e/n_e are Similar in Amplitude but Radial Profile Trend was Not Initially Reproduced

- $\tilde{T_e}/T_e \sim \tilde{n_e}/n_e$, consistent with experiment
- At $\rho = 0.5$, reasonable quantitative agreement
- Trend that fluctuation levels increase with radius not reproduced (White, POP, 2008)

Under-prediction at ρ ~ 0.75 could not be resolved even with extensive GYRO simulations (Holland, POP, 2009)

Radial trend recovered using gyrokinetic transport modeling, TGYRO (Candy, POP, 2009)

GYRO Predicts Temperature Fluctuations Drive 80% of Energy Flux at mid radius

- GYRO simulations at ρ ~ 0.5 has good quantitative agreement with experiment
 - fluctuation levels– energy fluxes

$$Q_e = \frac{3}{2} \langle \tilde{p}_e \tilde{v}_r \rangle = \frac{3}{2} n_e \langle \tilde{T}_e \tilde{v}_r \rangle + \frac{3}{2} T_e \langle \tilde{n}_e \tilde{v}_r \rangle$$

GYRO predicts
 T_e drives 80% of energy transport
 n_e drives 20% of energy transport

GYRO Predicts the Phase Difference Between \widetilde{T}_e and \widetilde{n}_e in the L-mode Plasma

Density and potential fluctuations are **in phase** - small transport contribution

Temperature and potential fluctuations are **out of phase** - large transport contribution

Phase between \tilde{n}_e and \tilde{T}_e could be measured in experiments using coupled reflectometry and CECE

Different responses of long wavelength density and

electron temperature fluctuations to ECH

ECH in Beam Heated L-mode Plasma: Change Profiles and **Drives for ITG, TEM Instabilities and Turbulence**

- •110 GHz ECH ($\rho \sim 0.17$)
- •Small changes in density
- Changes in scale lengths, $L_{Te} = T_e / (dT_e / d\rho) L_n$ are small
- •Largest changes overall: •Increase in T_e (x1.5-2) •Decrease in collisionality •a/LTi decreases
- •ONFTWO Power balance: Increase in electron thermal diffusivity

 Linear and nonlinear GYRO: increase in TEM turbulence, decrease in ITG turbulence

In Experiment, Fluctuation Levels T_e/T_e Are Correlated with Changes in Electron Heat Transport, \tilde{n}/n are not

GYRO results are used to predict change in $\tilde{n}_e - \tilde{T}_e$ phase angle as T_e is increased, TEM drive increased

SAN DIEGO

Nonlinear GYRO scans: Start with inputs from ITG L-mode plasma

Increase T_e by 50%, no change in a/L_{Te} Accomplished with ECH in experiment

In case with increased TEM turbulence, GYRO predicts: Increase in heat transport, Increase in \tilde{n}/n and \tilde{T}_e/T_e Increase in $\tilde{n}-\tilde{\phi}$ phase angle, no change in $\tilde{T}-\tilde{\phi}$ phase angle

Expect to measure a reduced n-T phase angle as T_e increases with ECH

Change in cross-phase angle between density and electron temperature fluctuations in response to ECH

Coupled Reflectometry and Correlation Electron Cyclotron Emission (CECE) for Cross-Phase Angle Measurement

White POP 2010

X-mode Correlation ECE radiometer

•Low-k \widetilde{T}_{e} (k_{heta} ρ_{s} < 0.3)

X-Mode quadrature Reflectometer

•Low-k \tilde{n}_e (k_{θ} ρ_s < 0.5)

Multi-channel systems are frequency-tuned to overlap sample volumes radially

```
•Spot-Sizes are similar \Delta z \sim 3.0-3.5 \text{ cm} \Delta r \sim 1.0 \text{ cm}
```


Predicted Trend is Observed at ρ = 0.55 and 0.65 but not At ρ = 0.75 in the High T_e Case

Base Case High T_e Case

ATIONAL FUSION FACILITY

SAN DIEGO

Measured n-T Phase Angle in NBI+ECH L-mode Agrees Quantitatively with Nonlinear GYRO Results; Questions Remain

$|\langle \widetilde{n}_{e}\widetilde{T_{e}}\rangle|^{2}$

•Nonlinear GYRO results

```
•Local Simulation at r/a = 0.65
•High T_e Case only
```

GYRO raw Phase = $-70^{\circ}+-2^{\circ}$ GYRO syn. Phase = $-71^{\circ}+-1^{\circ}$ Exp. n_e-T_e phase = $-61^{\circ}+-12^{\circ}$

•Cross-phase angle does depend sensitively on spacing between CECE and reflct sample volumes

•Need more modeling of reflectometer data – how is phase of fluctuations in reflectometer signals related to underlying phase of density turbulence?

Summary of Results

•In ITG-dominant L-mode plasmas, long wavelength ($k_{\theta}\rho_{s} < 0.5$) \tilde{T}_{e}/T_{e} are similar to amplitude to long wavelength \tilde{n}/n (0.5-2%, increasing with radius)

•After H-mode transition, core electron temperature fluctuations are significantly reduced; increased ExB shearing of ITG turbulence

•In experiments where TEM drive/thermal transport increased using ECH to modify plasma profiles, \tilde{T}_e/T_e and \tilde{n}/n respond differently • \tilde{T}_e/T_e increases (50-60%), \tilde{n}/n little to no change (< 5-10%)

•Nonlinear GYRO simulations predict increases in transport as TEM drive increases associated with

•Large change in T_e/T_e , smaller changes in \tilde{n}/n

•Change in cross-phase angle between \tilde{n} - $\tilde{\phi}$

•The change \tilde{n} - \tilde{T} phase angle is measured and is in good agreement with predictions from GYRO; ongoing modeling effort required

