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Generation of Fine Structures

 Shear operators 

in the phase space generate fine structures of df, 
and transfer the perturbations from macro- to 
micro-scales (where Zi, and Zj are a pair of the 
independent coordinates)

 Linear parallel advection, ballistic modes    exp(ikvt)

 Nonlinear wave-particle interactions, trapping, etc.

 Parallel advection  in ExB turbulence (W-S)

 ExB with FLR effect (Schekochihin, Tatsuno, Plunk)

 Magnetic drift and mirror force terms
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Entropy Variable dS

 Entropy variable dS is a good measure for 
fluctuations of f in the phase space.
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Outline

 Entropy production, transfer, and dissipation 
processes in the slab ITG turbulence

 Simulation and theoretical models

 Relation to the kinetic-fluid closure models

 Zonal flow dynamics and entropy balance in 
toroidal systems

 Zonal flow response in toroidal systems

 Zonal flow generation and entropy transfer

 Summary
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Kinetic simulation of 

entropy production, transfer 
and dissipation processes in 
slab ITG turbulence
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Slab ITG Turbulence Model
 Consider a reduced kinetic equation given by integrating 

the GK equation for vperp in a 2-D slab with uniform B0
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 Constant gradients for 

T & n (Instability drive)

 No zonal flow case

 Adiabatic electrons
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Simulation of the collisionless 
slab ITG turbulence

Velocity-space 

structure of df

Electrostatic potential 

(Stream Function)

Linear growth

Saturated 

turbulence
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Entropy balance derived from GK

 Source terms with constant n and Ti gradients drive the 
drift wave turbulence producing the entropy variable.

 The entropy balance equation relates dS with the 
transport flux and collisionnal dissipation.

  DQWS
dt
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(potential energy)
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Entropy Balance in Simulations
Collisionless

(quasisteady)



d

dt
dS iQi

D

Weakly-Collisional

(statistically steady)

DQii 

(Lenard-Berstein collision model)
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Entropy Production, Transfer, 
and Dissipation
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Spectral analysis of the 
distribution function
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 Hermite Polynomial Expansion

 Hermite Spectral eq. of the entropy variable density dSn

 Transfer function for dSn in n

)()1()( 22 22 x

n

n
xn

n e
dx

d
exH 

Hermite Spectral Eq. for dS
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dSn Spectrum

 Spectrum of the entropy variable density
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 is changed 
from 0.002 
to 0.002/1024
by factor of 1/4.



 Flux function of the entropy variable density in the n-
space 

 J is constant in a dissipation-free range where dSn is 
transferred, that is, the “inertial sub-range”.

“Inertial Sub-range” with 
Constant Transfer Function Jn
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 is changed 
from 0.002 
to 0.002/1024
by factor of 1/4.
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Limiting Form of Entropy 
Variable Spectrum

 A theoretical model for dSn

 Mixing theory of a passive 
scalar in the homogeneous 
isotropic turbulence
 Large Prandtl number

 Short wave-length regime

( <<  Kolmogolov scale)

 Effective wavenumber of df
is increased by turbulence   
(k ~ n0.5 ~ l).

 Finite resolution in the real 
space is taken into account.
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Profiles of dSk,n

 dSk,n reaches to the maximum k (especially 
for high-n) due to the turbulent cascade 
(or stretching).
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n

k Theory:  k ~ n0.5



Growth of <ky> in turbulence
 Effective wavenumber <ky> is roughly 

proportional to n1/2 (thus, ~ l) for large kmax.
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Relation to kinetic-fluid 
closure models
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Collisionless fluid equations
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 Fluid equations derived 
from the kinetic ones by 
taking velocity-space 
moments.

 The parallel heat flux qk

is taken into account.



Fluid & Kinetic Entropy Balance

 From the fluid equations,

 From the kinetic equation and its Hermite expansion,
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Phase angle x between Tk & qk

 Kinetic simulation results provide useful 
information for making a closure model

July-August 2010 GK programme @ Cambridge 21
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Zonal flow response in 
toroidal systems from a point 
of view of the entropy transfer 
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GK eqs. for toroidal flux tube

 GK ordering + Flute Reduction + Periodic (x,y)

 Co-centric & Circular Flux Surface with 
Constant Shear and Gradients (for tokamak)

 Quasi-Neutrality + Adiabatic Electron
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Collisionless Damping of 
Zonal Flow in Tokamak

 Consider the linearized
GK equation for the zonal 
flow component of n=0.

 Initial value problem for 
n=0 mode with df(t=0)=FM

 The residual zonal flow is 
important to regulating 
turbulent transport

(Rosenbluth & Hinton, 1998)
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Conservation Law for the 
Zonal Flow (n=0) Components

 From the gyrokinetic 
equation for ky=0,

… Subset of the entropy 
balance equation



dG

dt


d

dt
dSkx

Wkx
  0



dS  d3v ˜ f  kx
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2

Entropy variable dS
increases during the 
zonal flow damping.
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Velocity-Space Structures of f
during the ZF Damping

 Decrease of Wkx with the invariant G means 
increase of dSkx as well as generation of fine-scale 
structures of f due to phase mixing by passing 
particles  <=> Entropy transfer in the v-space

 Coherent structures for trapped particles

<=> Neoclassical Polarization
(21/2

v//

passing

trapped Bounced Averaged 

Solution
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 Radial drift motion of helical-ripple-trapped 
particles causes additional polarization effect of the 
zonal flow potential due to the phase mixing, and 
influences its response function.

Collisionless Response of 
Zonal Flows in Helical System
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Long-time Response Function for the initial Maxwellian



( q = 1.5,    et  = 0.1,  kr ai =0.131 )

( L = 2,  M = 10 )

Simulation of Zonal Flow 
Damping in Helical Systems

Simulation

Long-Time Response 

Kernel KL(t)

 Radial drift of helical-ripple-
trapped particles is found as 
well as the ballistic-like 
motion of passing particles.

Velocity distribution function for 

=8p/13 at t = 6.23 R0/vti. 
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Entropy balance in toroidal
ITG/ETG turbulence
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Entropy Balance Eq, Again
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Entropy Balance in Tokamak
ITG Turbulence

 The steady and constant transport flux is obtained with 
satisfying the entropy balance, which enables one to 
accurately evaluate ci.

 The perturbed distribution function shows fine velocity-
space structures far from the Maxwellian.
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Entropy Transfer to ZFs

 Self-adjointness of the 
collision operator 
guarantees the 
collisional dissipation 
Di < 0 for each k.

 Thus, the entropy 
transfer function  

T(NZ->Z) > 0 in the 
statistically steady 
turbulence

(Sugama, Watanabe & 

Nunami, 2009)
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Entropy Transfer Function

 Entropy transfer from non-zonal to zonal modes

 In the fluid limit with cold ions, 

represents product of the Reynolds stress due to the non-
zonal ExB drift velocity and the zonal ExB flow shear.
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ITG and ETG turbulence simulations  

t=35

t=65

t=200

Time evolutions of heat diffusivity 
and potential fluctuation  toroidal ITGs toroidal ETGs

t=200

t=45

t=35
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Entropy balance relation: 
Turbulence part   

toroidal ETG turbulence with

Comparison of entropy balance in toroidal ITG and ETG turbulence  

toroidal ITG turbulence with 

Turbulence-part Turbulence-part 
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toroidal ETG turbulence with

Comparison of entropy balance in toroidal ITG and ETG turbulence.  

Entropy balance relation: 
Zonal flow part   

toroidal ITG turbulence with 

Zonal flow-part Zonal flow-part 
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Summary
 We discussed entropy production, transfer, and 

dissipation processes in plasma turbulence and 
zonal flows.

 Entropy balance eq. describes transfer of the entropy 
variable in the phase space, and provides us a good 
measure for the steady and quasi-steady states of 
plasma turbulent transport and zonal flow dynamics.

 Entropy transfer from macro to micro scales through 
the “inertial sub-range” is related to generation of 
fine-scale structures of f by shear operators.

 ZF damping and generation are described as entropy 
transfer processes in the phase space (l- and k-spaces, 
respectively).
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