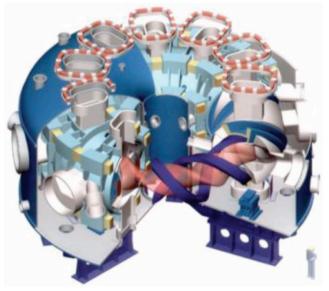
GROKINETICS IN LABORATORY AND ASTROPHYSICAL PLASMAS

Workshop "Kinetic-scale turbulence in laboratory and space plasmas: emprical constraints, fundamental concepts and unsolved problems" Issac Newton Institute for Mathematical Sciences, Cambridge, July 23, 2010

Effects of Three-Dimensional Geometry and Radial Electric Field on ITG Turbulence and Zonal Flows

H. Sugama

National Institute for Fusion Science, Graduate University of Advanced Studies Toki 509-5292, Japan

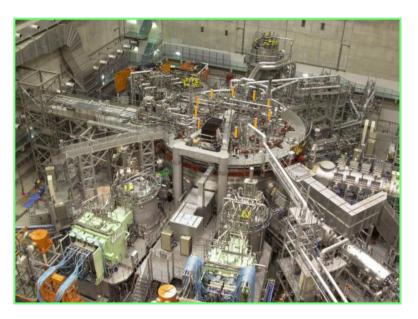

in collaboration with T.-H. Watanabe M. Nunami

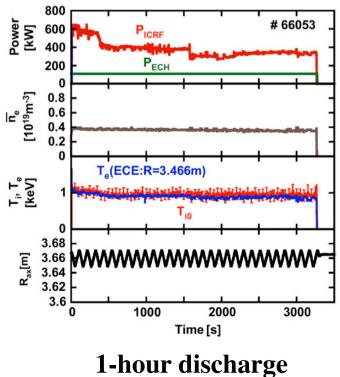
OUTLINE

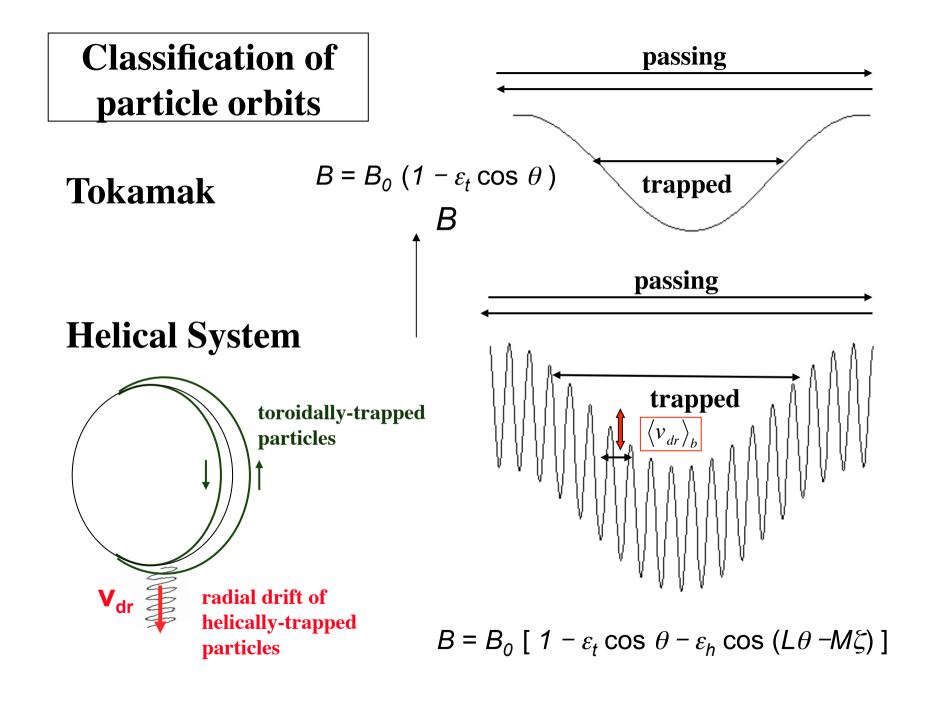
- Introduction
- Linear ITG Mode Analysis for High-*T*_i LHD plasmas
- Zonal Flows and ITG Turbulence
- Effects of Equilibrium Electric Field *E_r* on Zonal Flows in Helical Systems
- Momentum Balance and Radial Electric Field in Quasisymmetric Systems with Stellarator Symmetry
- Summary

Introduction

Large Helical Device (LHD)

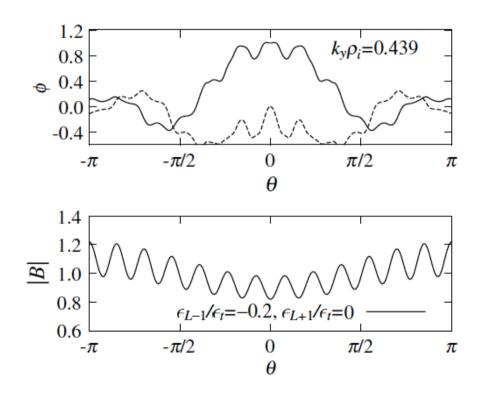

Heliotron configuration

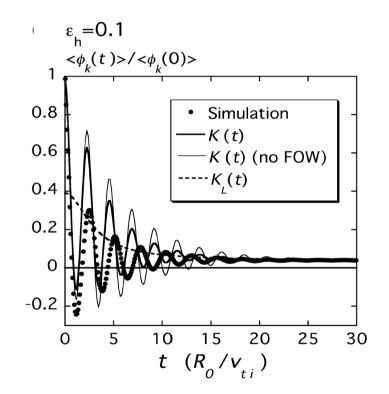

No net plasma current required


Suitable for steady-state operation

Max. parameters

R = 3.9 m a = 0.6 m $V = 30 m^{3}$ $B = 3 \sim 4 T$ $n = 1.1 \times 10^{21} m^{-3}$ $T_{e} = 15 keV$ $T_{H} = 5.2 keV$ $<\beta>= 5.1 \%$




Helical geometry influences ITG mode and zonal flow.

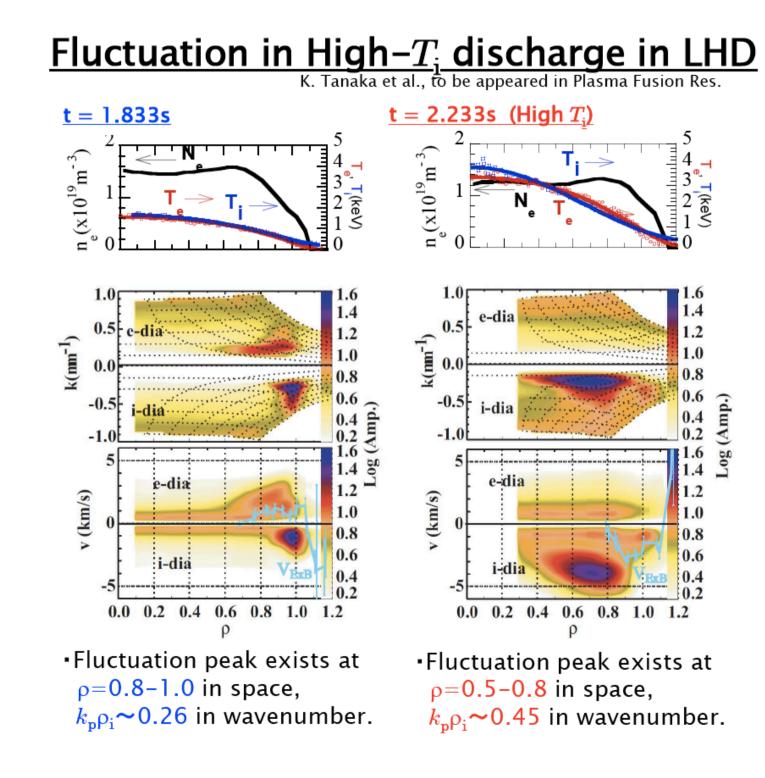
Eigenfunction of linear ITG mode electrostatic potential

Watanabe et al. NF2007

Zonal-flow response (GAM, residual ZF)

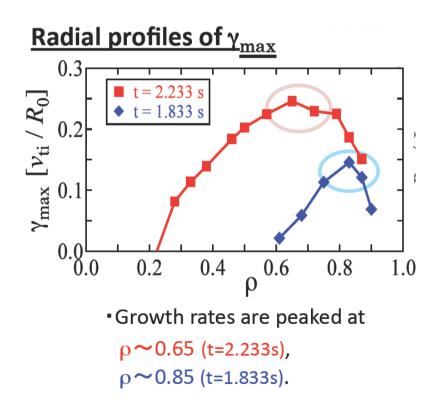
Sugama & Watanabe PoP2006

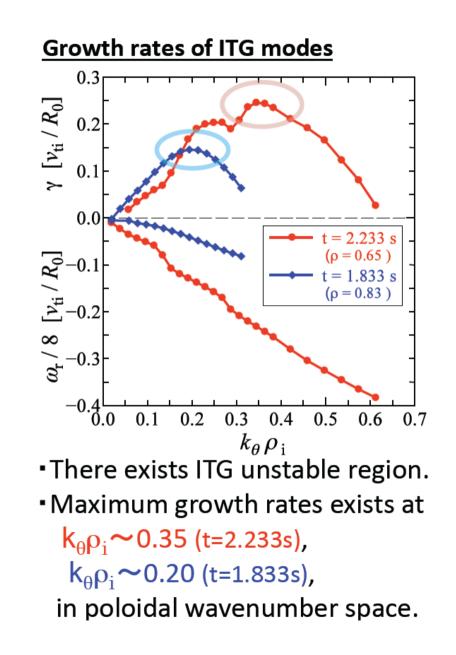
Gyrokinetic Equations (for ITG Turbulence) $k_{\perp}\rho_{i} \approx 1, \ k_{\perp}\rho_{e} <<1$


Ion gyrokinetic equation for $\delta f(x, v_{\parallel}, \mu, t)$

$$\begin{bmatrix} \frac{\partial}{\partial t} + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla + \mathbf{v}_{d} \cdot \nabla - \mu (\hat{\mathbf{b}} \cdot \nabla \Omega) \frac{\partial}{\partial v_{\parallel}} \end{bmatrix} \delta f + \frac{c}{B_{0}} \{ \psi, \delta f \} = \left(\mathbf{v}_{*} - \mathbf{v}_{d} - v_{\parallel} \hat{\mathbf{b}} \right) \cdot \frac{e \nabla \psi}{T_{i}} F_{M} + C(\delta f)$$

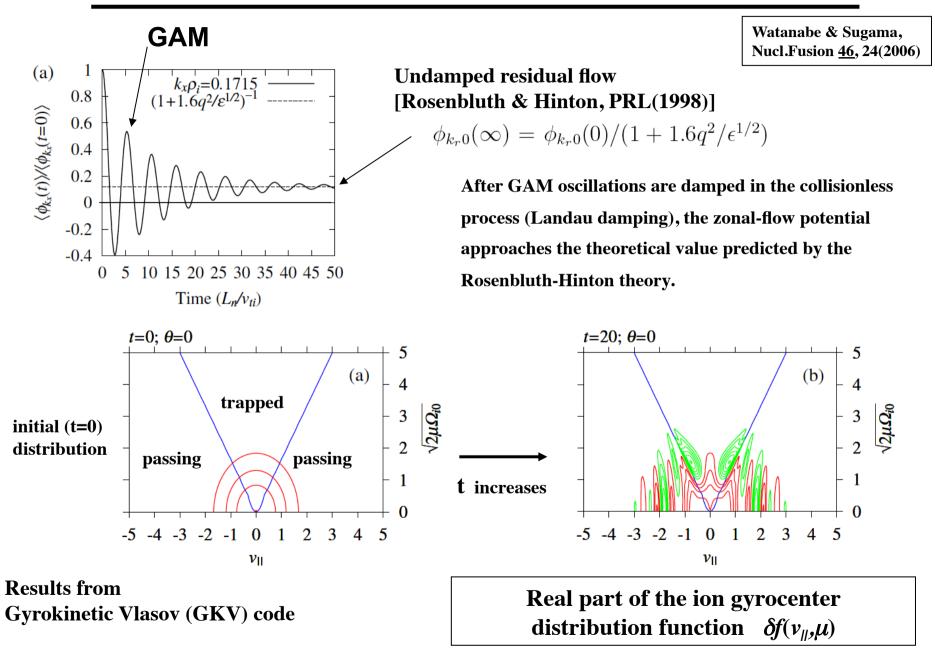
Diamagnetic drift $\mathbf{v}_{*} = -\frac{c T_{i}}{e L_{n} B_{0}} \left[1 + \eta_{i} \left(\frac{m v^{2}}{2T_{i}} - \frac{3}{2} \right) \right] \hat{\mathbf{y}}, \quad \mu = \frac{v_{\perp}^{2}}{2\Omega}$
Gyrocenter drift $\mathbf{v}_{d} \cdot \nabla$
Mirror force $-\mu (\mathbf{b} \cdot \nabla \Omega) \partial / \partial v_{\parallel}$ Effects of magnetic geometry

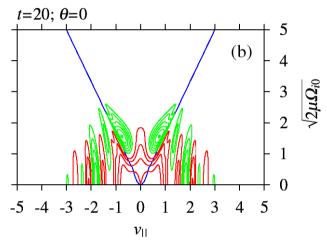

Quasineutrality condition & Adiabatic electron assumption


$$\int J_0(k_{\perp}v_{\perp}/\Omega) \delta f \, \mathrm{d}^3 v - \left[1 - \Gamma_0(k_{\perp}^2)\right] \frac{e\phi}{T_i} = \frac{e}{T_e} \left(\phi - \left\langle\phi\right\rangle\right), \quad k_{\perp}^2 = \left(k_x + \hat{s}zk_y\right)^2 + k_y^2$$

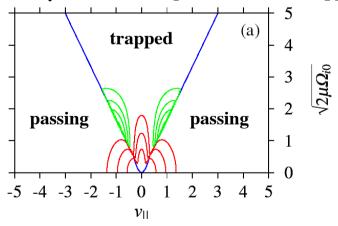
Ion polarization

Linear ITG Mode Analysis for High-T_i LHD plasmas


Results from Linear ITG Mode Analyses by GKV-X (See Poster by M. Nunami)


Zonal Flows and ITG Turbulence

Gyrokinetic Simulation of EXB Zonal Flow Damping in Tokamaks



Structures of the perturbed gyrocenter distribution for zonal-flow components (tokamak case)

Simulation results

Analytical solution (rapid oscillations dropped)

The gyrocenter distribution for residual zonal flow part can be described by the analytical solution.

$$f_{k_x,0}(t) = F_{\rm M} \frac{e \langle \phi_{k_x,0}(0) \rangle}{T_{\rm i}} [k_x^2 \rho_{\rm i}^2 + \{{\rm i}k_x(\overline{\rho_b} - \rho_b) + k_x^2(\rho_b\overline{\rho_b} - \frac{1}{2}\overline{\rho_b^2} - \frac{1}{2}\rho_b^2)/(1 + 1.6q^2/\epsilon^{1/2})]$$

Useful information to derive a kinetic-fluid closure model

Closure Model for Zonal Flow Dynamics in Tokamaks (I)

$$\begin{aligned} & \text{Parallel}_{\text{heat fluxes}} \quad \left[q_{\parallel}, q_{\perp} \right] \equiv \int d^{3}v \, \delta f \left[\left(mv_{\parallel}^{2} - 3T \right) v_{\parallel}, \left(\frac{1}{2} mv_{\perp}^{2} - T \right) v_{\parallel} \right] & \text{Sugama, Watanabe & Horton, PoP(2007)} \end{aligned}$$

$$\begin{aligned} & \text{Fourth-order}_{\text{moments}} \quad \left[\delta r_{\parallel\parallel}, \, \delta r_{\parallel\perp}, \, \delta r_{\perp\perp} \right] \equiv \int d^{3}v \, \delta f \left[mv_{\parallel}^{4}, \, \frac{1}{2} mv_{\parallel}^{2}v_{\perp}^{4}, \, \frac{1}{4} mv_{\perp}^{4} \right] \end{aligned}$$

$$\begin{aligned} & q = q \begin{pmatrix} l \\ \parallel} + q \begin{pmatrix} s \\ \parallel} \end{pmatrix} & \begin{pmatrix} l \end{pmatrix} \text{ long-time behavior}_{(\text{residual zonal flow})} + \begin{pmatrix} s \end{pmatrix} \text{ short-time behavior}_{(\text{GAM damping})} \end{aligned}$$

$$\begin{aligned} & using the analytical solution \, \delta f \end{aligned}$$

$$\begin{aligned} & q \begin{pmatrix} l \\ \parallel \mathbf{k}_{\perp} \end{pmatrix} = -2q \begin{pmatrix} l \\ \perp \mathbf{k}_{\perp} \end{pmatrix} = 2p_{0}U_{\mathbf{k}_{\perp}} \left[B - \left(\beta_{2}/\beta_{1} \right) B^{2} \right] \end{aligned}$$

$$\begin{aligned} & U_{\mathbf{k}_{\perp}} \equiv \beta_{1} \left(\beta_{1} - \langle B^{-2} \rangle \right)^{-1} \left[\langle u_{\parallel \mathbf{k}_{\perp}}/B \rangle - \langle B^{-2} \rangle \langle Bu_{\parallel \mathbf{k}_{\perp}}(t=0) \rangle \\ & - \left(\beta_{1}n_{0} \right)^{-1} \langle B^{-2} \rangle \left\langle \int d^{3}v \, F_{0}R_{\mathbf{k}_{\perp}}(t) \overline{(v_{\parallel}/B)} \right\rangle \right]. \end{aligned}$$

$$\begin{aligned} & \beta_{1} = \frac{15}{4} \int_{0}^{B_{M}} d\lambda / \langle B/(1-\lambda B)^{1/2} \rangle \\ & \beta_{2} = \frac{3}{2} \int_{0}^{B_{M}} \lambda d\lambda / \langle B/(1-\lambda B)^{1/2} \rangle \end{aligned}$$

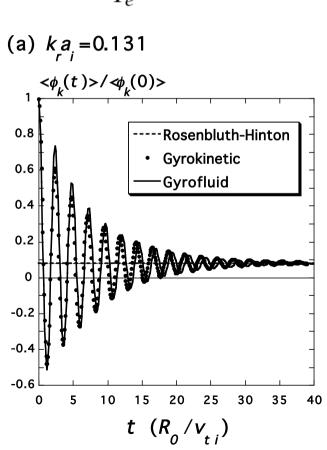
different model from Beer & Hammett (1998)

Closure Model for Zonal Flow Dynamics in Tokamaks (II)

$$q = q_{\parallel}^{(l)} + q_{\parallel}^{(s)} \quad (l) \text{ long-time behavior} \\ \text{(residual zonal flow)} + \quad (s) \text{ short-time behavior} \\ \text{(GAM damping)} + \quad (g_{\text{IM}}^{(s)} = -2\sqrt{\frac{2}{\pi}} i n_0 v_t \sum_m \frac{m}{|m|} \delta T_{\parallel m} e^{im\theta} \\ q_{\parallel}^{(s)} = -2\sqrt{\frac{2}{\pi}} i n_0 v_t \sum_m \frac{m}{|m|} \delta T_{\parallel m} e^{im\theta} \\ q_{\perp}^{(s)} = -\sqrt{\frac{2}{\pi}} i n_0 v_t \sum_m \frac{m}{|m|} \delta T_{\perp m} e^{im\theta} \\ n_0 \delta T_{\perp} = \delta p_{\perp} - T \delta n \\ n_0 \delta T_{\perp} = \delta p_{\perp}$$

Fourth-order variables

$$\left(\delta r_{\parallel\parallel}, \delta r_{\parallel\perp}, \delta r_{\perp\perp}\right) = \left(3, 1, 2\right) \times T v_t^2 \delta n^{(g)}$$


where the Maxwellian part of the perturbed distribution is taken into account.

Gyrofluid equations for ions combined with the quasineutrality condition

$$e^{-b_i/2} \left(\frac{\delta n_{i\mathbf{k}_{\perp}}^{(g)}}{n_0} - \frac{b_i}{2} \frac{\delta T_{i\perp\mathbf{k}_{\perp}}}{T_i} \right) - \frac{e\phi_{\mathbf{k}_{\perp}}}{T_i} \left[1 - \Gamma_0(b_i) \right] = \frac{e}{T_e} \left(\phi_{\mathbf{k}_{\perp}} - \langle \phi_{\mathbf{k}_{\perp}} \rangle \right)$$
(a) $k_{r_i} = 0.131$

Gyrofluid simulation shows a GAM damping process toward the same residual zonal-flow level as given by gyrokinetic simulation and the Rosenbluth-Hinton theory.

Rosenbluth-Hinton formula $K_{\rm R-H} = 1/(1+1.6q^2/\varepsilon_t^{1/2})$

Gyrofluid equations for electrons combined with the Poisson equation

$$e^{-b_{e}/2} \left(\frac{\delta n_{e\mathbf{k}_{\perp}}^{(g)}}{n_{0}} - \frac{b_{e}}{2} \frac{\delta T_{e\perp\mathbf{k}_{\perp}}}{T_{e}} \right) + \frac{e\phi_{\mathbf{k}_{\perp}}}{T_{e}} \left[1 - \Gamma_{0}(b_{e}) + k_{\perp}\lambda_{De}^{2} \right] = -\frac{e\phi_{\mathbf{k}_{\perp}}}{T_{i}}$$
(b) $k_{a_{e}} = 0.172$
(c) $k_{e^{i}} = 0.172$
(b) $k_{a_{e}} = 0.172$
(c) $k_{e^{i}} = 0.172$
(c) k_{e

 $t (R_0/v_{ti})$

Collisionless Time Evolution of Zonal Flows in Helical Systems

[Sugama & Watanabe, PRL (2005), Phys.Plasmas (2006)]

Response of the zonal-flow potential to a given initial potential

 $\left\langle \phi_k(t) \right\rangle = K(t) \left\langle \phi_k(0) \right\rangle$

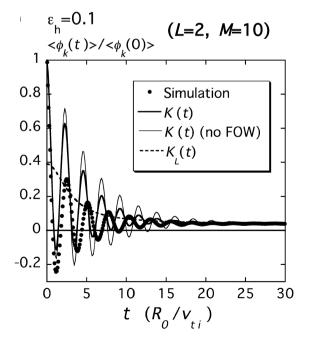
<u>**Response function</u> = GAM component + Residual component**</u>

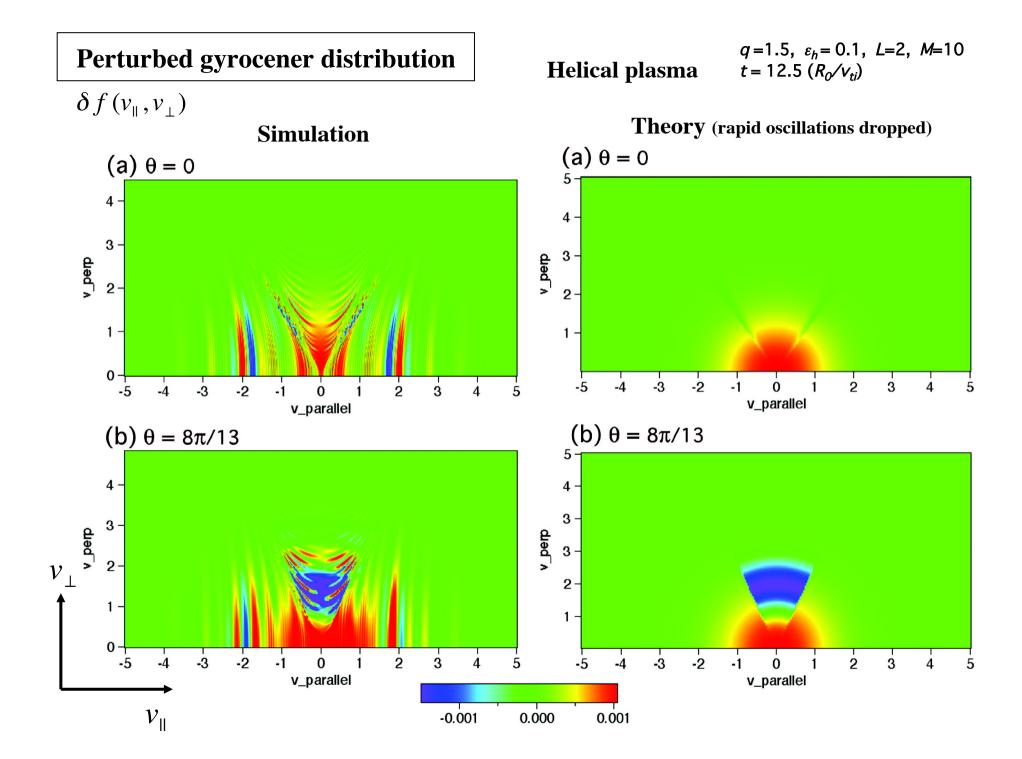
$$K(t) = K_{GAM}(t) [1 - K_L(0)] + K_L(t)$$

K(t=0) = 1 $K(t) \rightarrow K_L(t), K_{GAM}(t) \rightarrow 0 \text{ as } t \rightarrow +\infty$

 $B = B_0 \left[1 - \varepsilon_t \cos \theta - \varepsilon_h \cos \left(L \theta - M \zeta \right) \right]$

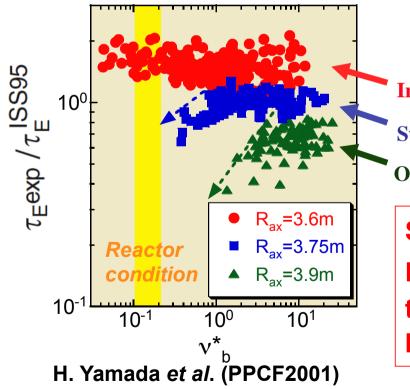
 $k \rho_i < 1$


GAM response function $K_{GAM}(t) = \cos(\omega_G)\exp(-|\gamma|t)$


Long-time response function

$$K_{L}(t) = \frac{1 - (2/\pi)^{1/2} \langle (2\varepsilon_{H})^{1/2} \{1 - g_{i1}(t,\theta)\} \rangle}{1 + G + E(t) / \left(n_{0} \langle k_{\perp}^{2} \rho_{ti}^{2} \rangle\right)}$$

E(t) represents effects of shielding of potential due to helical-ripple-trapped particles.

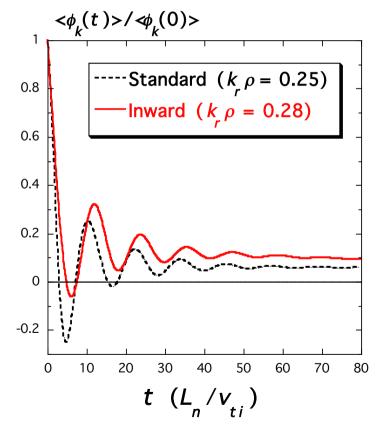

$$E(t) = \frac{2}{\pi} n_0 \bigg[\left\langle (2\varepsilon_H)^{1/2} \{1 - g_{i1}(t,\theta)\} \right\rangle - \frac{3}{2} \left\langle k_\perp^2 \rho_{ii}^2 \right\rangle \left\langle (2\varepsilon_H)^{1/2} \{1 - g_{i1}(t,\theta)\} \right\rangle + \frac{T_i}{T_e} \left\langle (2\varepsilon_H)^{1/2} \{1 - g_{e1}(t,\theta)\} \right\rangle \bigg]$$

Results from LHD experiments

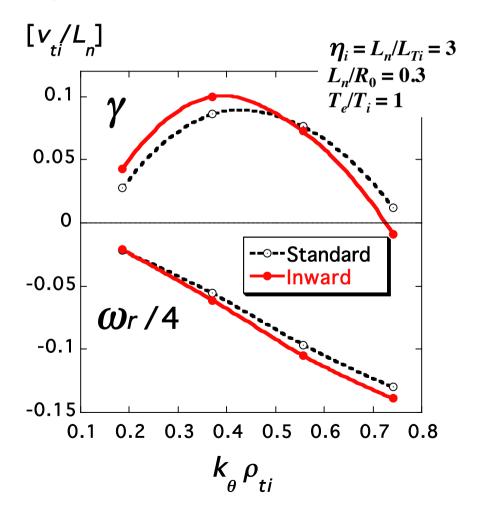
For low collisionality, better confinement is observed in the inward-shifted magnetic configurations, where lower neoclassical ripple transport but more unfavorable magnetic curvature driving pressure-gradient instabilities are anticipated.

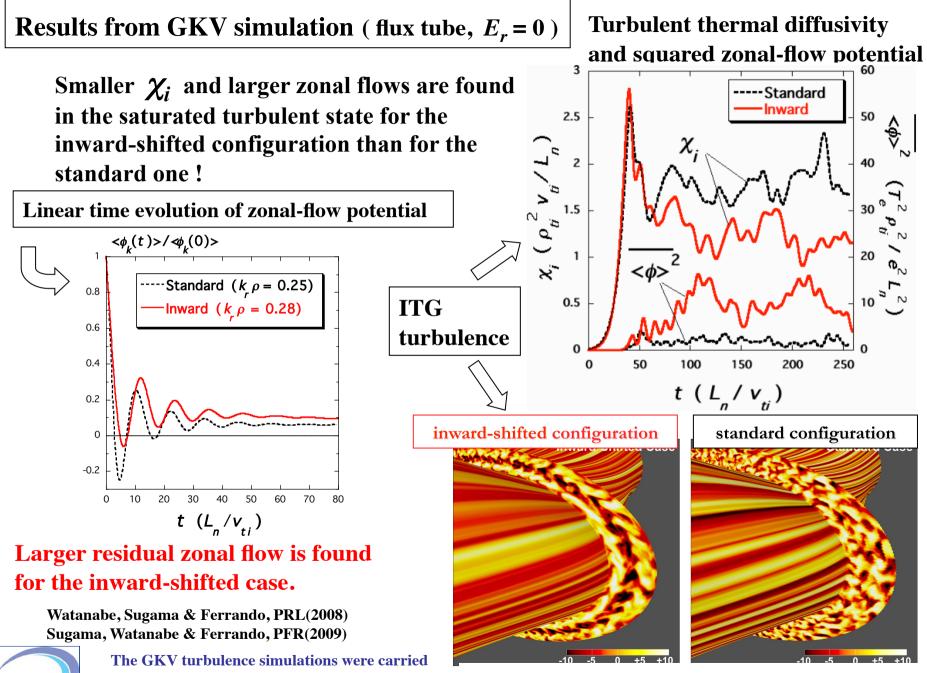
Anomalous transport is also improved in the inward shifted configuration.

Inward-shifted


Standard

Outward-shifted


Scenario:


Neoclassical optimization contributes to reduction of anomalous transport by enhancing the zonal-flow level. For the inward-shifted case, more unfavorable curvature but lower q and higher magnetic shear s.

Larger residual zonal flow is found for the inward-shifted case.

Response of zonal-flow potential to a given initial potential The maximum ITG growth rate is slightly larger for the inward-shifted case.

out by the Earth Simulator (JAMSTEC).

SIMULATO

Potential contours obtained from six copies of flux tube

Effects of Equilibrium Electric Field E_r on Zonal Flows in Helical Systems

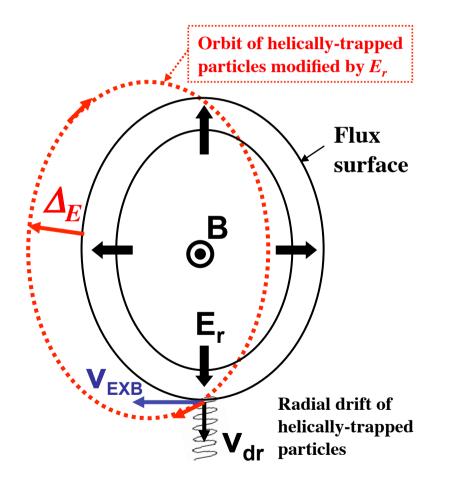
In helical systems

- E_r is given from ambipolar condition of radial particle fluxes.
- E_r reduces neoclassical ripple transport.

How does E_r influence zonal flows and anomalous transport?

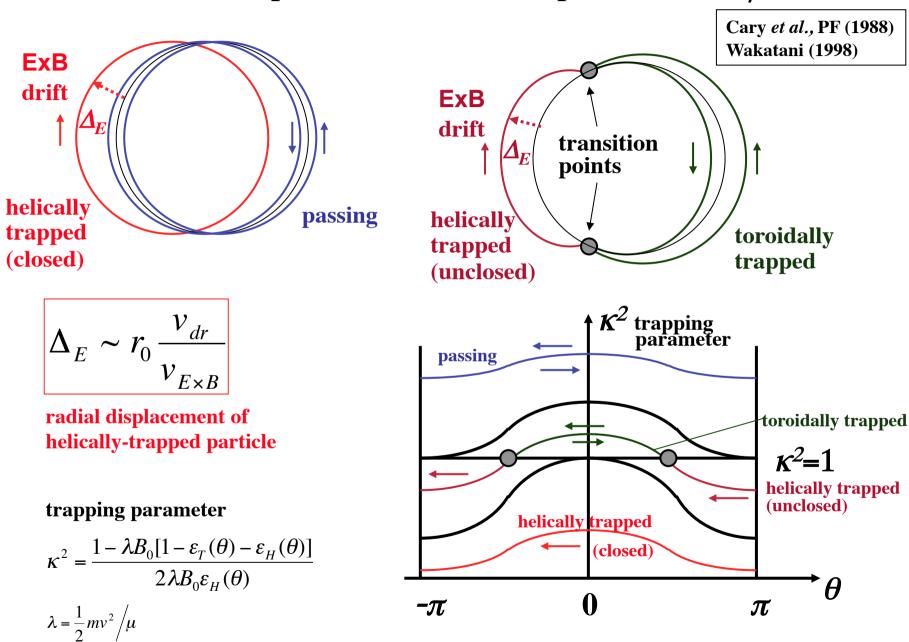
Effects of E_r on gyrokinetic equation and zonal flows

Gyrokinetic equation for $\mathbf{k}_{\perp} = k_r \nabla r$ $\begin{bmatrix} \frac{\partial}{\partial t} + v_{\parallel} \hat{\mathbf{b}} \cdot \nabla + i \mathbf{k}_r \cdot \mathbf{v}_d - \mu (\hat{\mathbf{b}} \cdot \nabla \Omega) \frac{\partial}{\partial v_{\parallel}} + \omega_E \frac{\partial}{\partial \alpha} \end{bmatrix} \delta f = -i \mathbf{k}_r \cdot \mathbf{v}_d \frac{e \langle \phi(\mathbf{x} + \rho) \rangle}{T_i} F_M$ **angular velocity due to ExB drift** $\omega_E = -\frac{c E_r}{r_0 B_0}$ **field line label** $\alpha = \theta - \zeta/q$

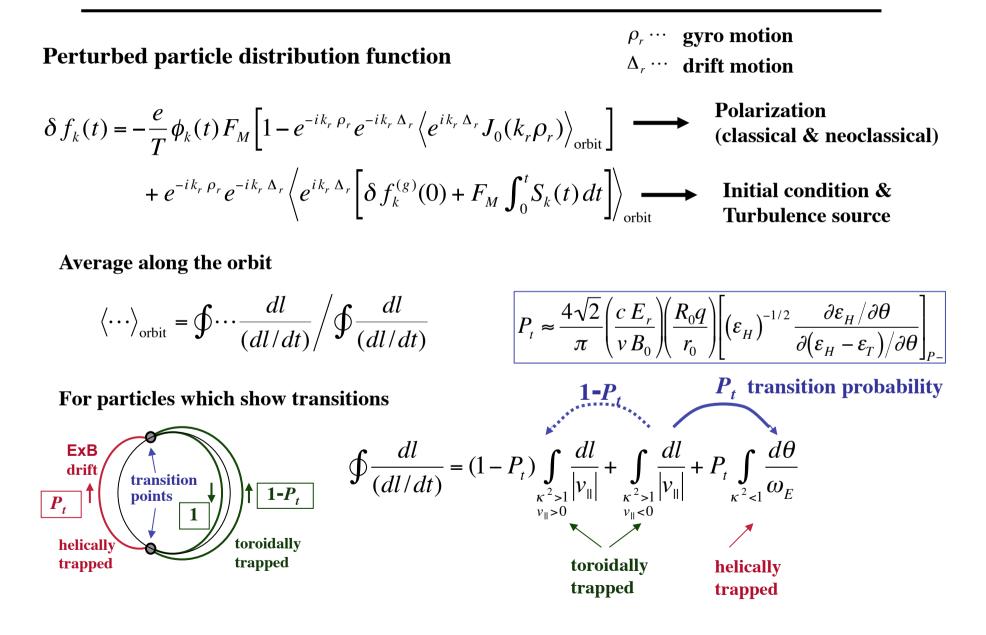

In helical systems, $\boldsymbol{\alpha}$ -dependence appears in $\mathbf{k}_r \cdot \mathbf{v}_d$ and $\mu(\hat{\mathbf{b}} \cdot \nabla \Omega)$.

Therefore, even if the zonal-flow potential ϕ is independent of α , δf comes to depend on α .

Thus, ω_E influences δf and accordingly ϕ through quasineutrality condition.


Effects of Equilibrium E_r on Zonal-Flow Response

Equilibrium E_r field generates a ExB component to the velocity.


Poloidal ExB rotation of helicallytrapped particles with reduced radial displacements Δ_E will decrease the shielding of zonalflow potential and increase its response.

> Mynick & Boozer, PoP(2007) Action-Angle Formulation

Classification of particle orbits in the presence of E_r

Solution of gyrokinetic equation to describe long-time evolution of zonal flows [Sugama & Watanabe, PoP(2009)]

Long-time zonal-flow response to the initial condition and turbulence source

For radial wavenumbers $k_r \rho_{ti} < 1$ (ITG turbulence) and $k_r \Delta_E < 1$, the zonal-flow potential is derived from the quasineutrality condition as [Sugama & Watanabe, PoP(2009)]

$$\frac{e}{T_{i}}\langle\phi_{k}(t)\rangle = \frac{\left\langle n_{0}^{-1}\int d^{3}v \left[1+ik_{r}\left(\Delta_{ir}-\left\langle\Delta_{ir}\right\rangle_{\text{orbit}}\right)\right] \left[\delta f_{ik}^{(g)}(0)+F_{M}\int_{0}^{t}S_{ik}(t)dt\right]\right\rangle}{\left(k_{r}\rho_{ti}\right)^{2} \left[1+G_{p}+G_{t}+M_{p}^{-2}(G_{ht}+G_{h})(1+T_{e}/T_{i})\right]}$$

Geometrical factors G's represents shielding effects of neoclassical polarization due to particles motions in different orbits.

 $G \propto (\text{population})$ $G_p: \text{passing}$ $G_{ht}: \text{helicallly-trapped (unclosed orbit)}$ $\times (\Delta_r / \rho)^2$ $G_t: \text{toroidally-trapped}$ $G_h: \text{toroidally-trapped (closed orbit)}$

Zonal-flow generation can be enhanced when G_{ht} and G_h decreases with neoclassical optimization (which reduces radial drift velocity V_{dr}) and when poloidal Mach number $M_p = \frac{(cE_r/B_0)/(rv_{ti}/Rq)}{r}$ increases with increasing E_r and using heavier ions. Assume the initial distribution to have Maxwellian dependence $\delta f_{ik}^{(g)}(0) = [\delta n_k^{(g)}(0)/n_0]F_M$ $\delta n_k^{(g)}(0)/n_0 = (k_r \rho_{ti})^2 e \phi(0)/T_i$ Then, we obtain

$$\langle \phi_k(t) \rangle = \frac{\langle \phi_k(0) \rangle}{1 + G_p + G_t + M_p^{-2} (G_{ht} + G_h) (1 + T_e / T_i)}$$

(no turbulence source)

For the single-helicity configuration

 $B = B_0 [1 - \varepsilon_t \cos\theta - \varepsilon_h \cos(L\theta - M\varsigma)] \quad (\varepsilon_h : \text{independent of } \theta)$ r. $G_{ht} = 0, \quad G_h = (15\pi/4)q^2(2\varepsilon_h)^{1/2}$

No transitions occur.

$$\langle \phi_k(t) \rangle = \frac{\langle \phi_k(0) \rangle}{1 + G_p + G_t + (15\pi/4)M_p^{-2}q^2(2\varepsilon_h)^{1/2}(1 + T_e/T_i)}$$

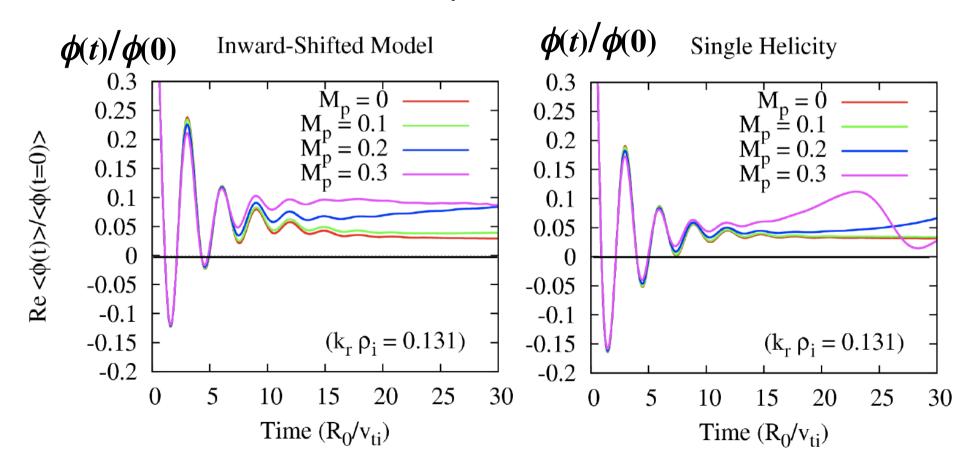
This corresponds to the case considered by previous works.

Mynick & Boozer, PoP(2007) Sugama, Watanabe & Ferrando, PFR(2008) GKV code is extended from the flux tube to the poloidally global model for studying effects of E_r on zonal flows in helical systems [Watanabe, IAEA FEC 2008].

$$\alpha \equiv \theta - \zeta / q$$
 : field-line label ζ : toroidal angle

•Linear simulations for time evolution of zonal flows are done using

129 Fourier modes in the α direction, 1,536 grid points in the ζ direction, and (512, 48) grid points in the (v_{\parallel}, μ) space for a fixed radial wavenumber k_r .

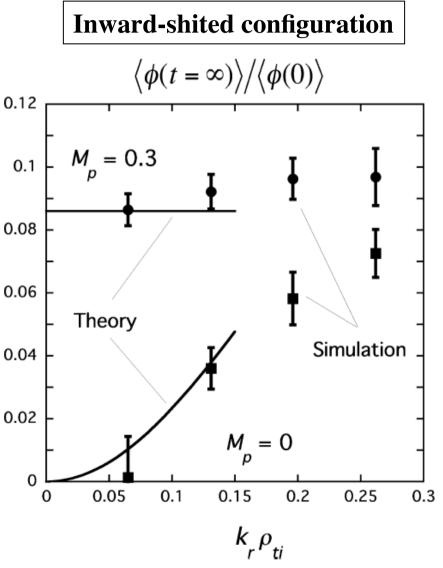

•Standard configuration model (single helicity) :

 $B = B_0 [1 - \varepsilon_t \cos \theta - \varepsilon_h \cos(L\theta - M\varsigma)], \quad \varepsilon_t = 0.1, \quad \varepsilon_h = 0.1, \quad q = 1.5, \quad L = 2, \quad M = 10$

•Inward-shifted configuration model :

Sideband helicity components $(\varepsilon_{L+1} = -0.02, \varepsilon_{L-1} = -0.08)$ are included. Collisionless time evolution of zonal flows in helical configurations with E_r

It is clearly shown for the inward-shifted model configuration that the residual zonal-flow potential amplitude (observed after Landau damping of GAM) is enhaced by increasing E_r .

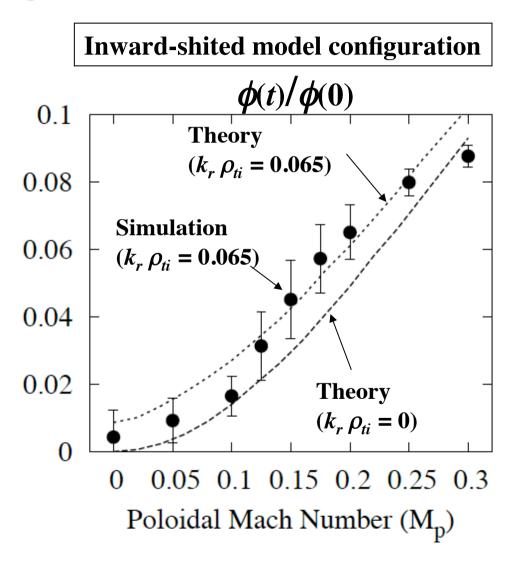


The residual zonal-flow potential as a function of $k_r \rho_{ti}$ for $M_p = 0$ and $M_p = 0.3$

Different $k_r \rho_{ti}$ dependences for $M_p = 0$ and $M_p = 0.3$ are theoretically predicted and confirmed by simulation.

Theoretical results are derived by assuming $k_r \rho_{ti} \ll 1$.

[To be published in CPP]


Dependence of the residual zonal-flow potential on the poloidal Mach Number (M_p) for $k_r \rho_{ti} = 0.065$

Residual zonal-flow potential increases with increasing M_p .

Qualitative agreement between theory and simulation is verified.

More details are found in poster by T.-H. Watanabe

[submitted to PPCF]

Momentum Balance and Radial Electric Field in Quasisymmetric Systems with Stellarator Symmetry

Basic Boltzmann Kinetic Equation for description of Collisional and Turbulent Transport

Equilibrium magnetic field $\mathbf{B} = \psi' \nabla s \times \nabla \theta + \chi' \nabla \zeta \times \nabla s = B_s \nabla s + B_\theta \nabla \theta + B_\zeta \nabla \zeta$

Boltzmann kinetic equation

$$\left[\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla + \frac{e_a}{m_a} \left\{ \left(\mathbf{E} + \hat{\mathbf{E}}\right) + \frac{1}{c} \mathbf{v} \times \left(\mathbf{B} + \hat{\mathbf{B}}\right) \right\} \cdot \frac{\partial}{\partial \mathbf{v}} \right] (f_a + \hat{f}_a) = C_a (f_a + \hat{f}_a)$$

Ensemble-averaged kinetic equation

$$\frac{d}{dt}f_a \equiv \left[\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla + \frac{e_a}{m_a} \left(\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}\right) \cdot \frac{\partial}{\partial \mathbf{v}}\right] f_a = \langle C_a \rangle_{\text{ens}} + \mathcal{D}_a$$
$$\mathcal{D}_a = -\frac{e_a}{m_a} \left\langle \left(\hat{\mathbf{E}} + \frac{1}{c}\mathbf{v} \times \hat{\mathbf{B}}\right) \cdot \frac{\partial \hat{f}_a}{\partial \mathbf{v}} \right\rangle_{\text{ens}}$$

Classical, Neoclassical, and Anomalous Transport of Particles and Heat [Sugama et al. PoP1996]

The gyrophase (ξ) -average part and the oscillating part of an aribtrary function F is defined by $\overline{F} \equiv (2\pi)^{-1} \oint d\xi F$ and $\widetilde{F} \equiv F - \overline{F}$ respectively.

 $\Gamma_a \equiv \langle \Gamma_a \cdot \nabla s \rangle \equiv \left\langle \int d^3 v \ \tilde{f}_a \mathbf{v} \cdot \nabla s \right\rangle$ **Particle flux** $\frac{q_a}{T_a} \equiv \frac{\langle \mathbf{q}_a \cdot \nabla s \rangle}{T_a} \equiv \left\langle \int d^3 v \ \tilde{f}_a \left(\frac{m_a v^2}{2T_c} - \frac{5}{2} \right) \mathbf{v} \cdot \nabla s \right\rangle$ Heat flux

The ensemble-averaged kinetic equation is divided as

$$\overline{\mathcal{L}(\overline{f}_a + \widetilde{f}_a)} = \left\langle \overline{C}_a \right\rangle_{\text{ens}} + \overline{\mathcal{D}}_a, \qquad \Omega_a \frac{\partial f_a}{\partial \xi} = \widetilde{\mathcal{L}f}_a - \left\langle \widetilde{C}_a \right\rangle_{\text{ens}} - \widetilde{\mathcal{D}}_a$$

$$\mathcal{L} \equiv d/dt + \Omega_a \partial/\partial \xi$$

cond order part of \widetilde{f}_a in $\delta \sim \rho/L$

See

$$\tilde{f}_{a2} = \left(\tilde{f}_a^N\right) + \tilde{f}_a^H + \left(\tilde{f}_a^C\right) + \left(\tilde{f}_a^A\right) \equiv \frac{1}{\Omega_a} \int^{\xi} d\xi \left[\mathcal{L}\overline{f}_{a1}\right] + \mathcal{L}\widetilde{f}_{a1} - \left(\mathcal{L}_a^L(\tilde{f}_{a1}) - \widetilde{D}_a\right) + \mathcal{L}\widetilde{f}_{a2} - \mathcal{L}\widetilde{f}_{a2} -$$

$$\frac{\partial}{\partial t}(n_a m_a \mathbf{u}_a) = -\nabla \cdot \mathbf{P}_a + n_a e_a \left(\mathbf{E} + \frac{\mathbf{u}_a}{c} \times \mathbf{B}\right) + \mathbf{F}_{a1} + \mathbf{K}_{a1}$$

density $n_a \equiv \int d^3v f_a$ **particle flux** $n_a \mathbf{u}_a \equiv \int d^3v f_a \mathbf{v}$

pressure tensor $\mathbf{P}_a \equiv \int d^3 v \ f_a m_a \mathbf{v} \mathbf{v}$

friction force $\mathbf{F}_{a1} \equiv \int d^3 v \ C_a(f_a) m_a \mathbf{v}$

turbulent electromagnetic force $\mathbf{K}_{a1} \equiv \int d^3 v \ \mathcal{D}_a \mathbf{v}$

$$\sum_{a} \mathbf{K}_{a1} = \nabla \cdot \left\langle \frac{1}{4\pi} \left(\hat{\mathbf{E}} \hat{\mathbf{E}} + \hat{\mathbf{B}} \hat{\mathbf{B}} \right) - \frac{1}{8\pi} \left(\hat{E}^{2} + \hat{B}^{2} \right) \mathbf{I} \right\rangle_{\text{ens}} - \frac{1}{4\pi c} \frac{\partial}{\partial t} \left\langle \hat{\mathbf{E}} \times \hat{\mathbf{B}} \right\rangle_{\text{ens}} = \nabla \cdot \mathbf{T}_{EM} - \frac{\partial}{\partial t} \left(\frac{\mathbf{S}_{EM}}{c^{2}} \right),$$

Momentum Balance in the direction tangential to the flux surface

 $(c_1, c_2: \text{constants})$

$$\frac{\partial}{\partial t} \sum_{a} \left\langle n_{a} m_{a} \left\{ c_{1} \left(u_{a\theta} + \frac{(S_{EM})_{\theta}}{c^{2}} \right) + c_{2} \left(u_{a\zeta} + \frac{(S_{EM})_{\zeta}}{c^{2}} \right) \right\} \right\rangle$$

$$= -\frac{1}{V'} \frac{\partial}{\partial s} \left[V' \left\langle \nabla s \cdot \left(\sum_{a} \mathbf{P}_{a} - \mathbf{T}_{EM} \right) \cdot \left(c_{1} \frac{\partial \mathbf{x}}{\partial \theta} + c_{2} \frac{\partial \mathbf{x}}{\partial \zeta} \right) \right\rangle \right] + \frac{1}{c} \left(-c_{1} \psi' + c_{2} \chi' \right) \sum_{a} e_{a} \left\langle n_{a} u_{a}^{s} \right\rangle$$

 (s, θ, ζ) : Hamada coordinates

The surface-averaged radial current

$$\sum_{a} e_{a} \Gamma_{a} \equiv \sum_{a} e_{a} \langle n_{a} u_{a}^{s} \rangle = -\frac{1}{4\pi} \frac{\partial}{\partial t} \langle E^{s} \rangle$$

Quasisymmetry

[Boozer(1983), Nuhrenberg(1988), Helander&Simakov (2008)]

$$c_1 \frac{\partial B}{\partial \theta} + c_2 \frac{\partial B}{\partial \zeta} = 0$$

quasi-axi-symmetry $(c_1, c_2) = (0, 1)$ quasi-poloidal-symmetry $(c_1, c_2) = (1, 0)$

The $O(\delta)$ viscosity component in the quasisymmetry direction vanishes :

$$\left\langle \left(c_1 \frac{\partial \mathbf{x}}{\partial \theta} + c_2 \frac{\partial \mathbf{x}}{\partial \zeta} \right) \cdot \left[\nabla \cdot \left\{ P_{\parallel a} \mathbf{b} \mathbf{b} + P_{\perp a} \left(\mathbf{I} - \mathbf{b} \mathbf{b} \right) \right\} \right] \right\rangle$$
$$= -\left\langle \left(\left(P_{\parallel a} - P_{\perp a} \right) \left(c_1 \frac{\partial \mathbf{x}}{\partial \theta} + c_2 \frac{\partial \mathbf{x}}{\partial \zeta} \right) \cdot \nabla \ln B \right\rangle = 0$$

The ambipolarity $\sum_{a} e_a \langle n_a u_a^s \rangle = 0$ is satisfied automatically up to $O(\delta)$.

Stellarator Symmetry

Magnetic field strength

 $B(s, -\theta, -\zeta) = B(s, \theta, \zeta)$

Magnetic field components

$$B^{\theta}(s, -\theta, -\zeta) = B^{\theta}(s, \theta, \zeta),$$

$$B_{\theta}(s, -\theta, -\zeta) = B_{\theta}(s, \theta, \zeta),$$

$$B_{s}(s, -\theta, -\zeta) = -B_{s}(s, \theta, \zeta),$$

$$B^{\zeta}(s, -\theta, -\zeta) = B^{\zeta}(s, \theta, \zeta)$$
$$B_{\zeta}(s, -\theta, -\zeta) = B_{\zeta}(s, \theta, \zeta)$$

Metric tensor components

$$g_{ss}(s, -\theta, -\zeta) = g_{ss}(s, \theta, \zeta),$$

$$g_{\theta\zeta}(s, -\theta, -\zeta) = g_{\theta\zeta}(s, \theta, \zeta),$$

$$g_{s\theta}(s, -\theta, -\zeta) = -g_{s\theta}(s, \theta, \zeta),$$

$$g(s, -\theta, -\zeta) = g(s, \theta, \zeta),$$

$$g_{\theta\theta}(s, -\theta, -\zeta) = g_{\theta\theta}(s, \theta, \zeta),$$

$$g_{\zeta\zeta}(s, -\theta, -\zeta) = g_{\zeta\zeta}(s, \theta, \zeta),$$

$$g_{s\zeta}(s, -\theta, -\zeta) = -g_{s\zeta}(s, \theta, \zeta),$$

Parity Transformation associated with Stellarator Symmetry

Expansion in $\eta \sim \delta \sim \rho / L$ (Put $e_a \rightarrow \eta^{-1} e_a$ in Boltzmann and Maxwell eqs.) $f_a(s, \theta, \zeta, v^s, v^{\theta}, v^{\zeta}, t, \eta) = f_{aM}(s, v, \eta^2 t) + \eta f_{a1}(s, \theta, \zeta, v^s, v^{\theta}, v^{\zeta}, \eta^2 t) + \eta^2 f_{a2}(s, \theta, \zeta, v^s, v^{\theta}, v^{\zeta}, \eta^2 t) + \cdots,$ $\Phi(s, \theta, \zeta, t, \eta) = \eta \Phi_1(s, \eta^2 t) + \eta^2 \Phi_2(s, \theta, \zeta, \eta^2 t)$

Parity operator \mathcal{P} is defined by $(\mathcal{P}Q)(s,\theta,\zeta,v^s,v^{\theta},v^{\zeta},t,\eta) \equiv Q(s,-\theta,-\zeta,v^s,-v^{\theta},-v^{\zeta},t,-\eta)$

In the presence of stellarator symmetry, Boltzmann and Maxwell equations are invariant under parity transformation

 $f_{a} + \hat{f}_{a} \longrightarrow \mathcal{P}(f_{a} + \hat{f}_{a})$ $E_{s} + \hat{E}_{s}, E_{\theta} + \hat{E}_{\theta}, E_{\zeta} + \hat{E}_{\zeta} \longrightarrow -\mathcal{P}(E_{s} + \hat{E}_{s}), \mathcal{P}(E_{\theta} + \hat{E}_{\theta}), \mathcal{P}(E_{\zeta} + \hat{E}_{\zeta})$ $B_{s} + \hat{B}_{s}, B_{\theta} + \hat{B}_{\theta}, B_{\zeta} + \hat{B}_{\zeta} \longrightarrow -\mathcal{P}(B_{s} + \hat{B}_{s}), \mathcal{P}(B_{\theta} + \hat{B}_{\theta}), \mathcal{P}(B_{\zeta} + \hat{B}_{\zeta})$

Parity of solutions

$$\mathcal{P}f_a = f_a, \qquad -\mathcal{P}\Phi = \Phi$$
$$f_j(s, -\theta, -\zeta, v^s, -v^{\theta}, -v^{\zeta}, \eta^2 t) = (-1)^j f_j(s, \theta, \zeta, v^s, v^{\theta}, v^{\zeta}, \eta^2 t)$$
$$\Phi_j(s, -\theta, -\zeta, \eta^2 t) = (-1)^{j-1} \Phi_j(s, \theta, \zeta, \eta^2 t)$$

When *j* is even, the $O(\delta^j)$ part of radial transport fluxes of poloidal and toroidal momentum vanish.

$$\left\langle \left(P_a^{(j)}\right)_{\theta}^s \right\rangle = \left\langle \left(P_a^{(j)}\right)_{\zeta}^s \right\rangle = \left\langle \left(T_{EM}^{(j)}\right)_{\theta}^s \right\rangle = \left\langle \left(T_{EM}^{(j)}\right)_{\zeta}^s \right\rangle = 0 \quad \text{(for even } j\text{)}$$

Momentum Balance in Quasisymmetric Systems with Stellarator Symmetry

In quasisymmetric systems with stellarator symmetry, the momentum transport fluxes vanish up to $O(\delta^2)$, and the ambipolarity is automatically satisfied up to $O(\delta^2)$.

The momentum balance equation determing E_s is of $O(\delta^3)$:

$$\begin{split} &\frac{\partial}{\partial t} \left[\frac{\left(c_{2}\chi' - c_{1}\psi'\right)}{4\pi c} \left\{ \langle |\nabla s|^{2} \rangle + \frac{4\pi c^{2}\sum_{a}n_{a}m_{a}}{\left(c_{2}\chi' - c_{1}\psi'\right)^{2}} \left\langle \left|c_{1}\frac{\partial \mathbf{x}}{\partial \theta} + c_{2}\frac{\partial \mathbf{x}}{\partial \zeta}\right|^{2} \right\rangle \right\} E_{s} \\ &+ \sum_{a} \frac{m_{a}}{\left(c_{2}\chi' - c_{1}\psi'\right)} \left\{ -\frac{c}{e_{a}}\frac{\partial p_{a}}{\partial s} \left\langle \left|c_{1}\frac{\partial \mathbf{x}}{\partial \theta} + c_{2}\frac{\partial \mathbf{x}}{\partial \zeta}\right|^{2} \right\rangle + \frac{n_{a}V'}{4\pi^{2}} \left\langle c_{1}B_{\theta} + c_{2}B_{\zeta} \right\rangle \left\langle c_{2}u_{a}^{\theta} - c_{1}u_{a}^{\zeta} \right\rangle \right\} \right] \\ &= -\frac{1}{V'}\frac{\partial}{\partial s} \left[V' \left\langle \nabla s \cdot \left(\sum_{a} \mathbf{P}_{a}^{(3)} - \mathbf{T}_{EM}^{(3)}\right) \cdot \left(c_{1}\frac{\partial \mathbf{x}}{\partial \theta} + c_{2}\frac{\partial \mathbf{x}}{\partial \zeta}\right) \right\rangle \right] \end{split}$$

Momentum Balance in Toroidally Rotating Tokamaks with Toroidal Velocity $V \sim v_{Ti}$ [Sugama& Horton, PoP1998]

Toroidal flow is proportional to the radial electric field

$$V_0 = RV^{\zeta} = -Rc \frac{\partial \Phi_0(\Psi)}{\partial \Psi}$$

The momentum balance equation determining E_s is of $O(\delta^2)$:

$$\frac{\partial}{\partial t} \left\langle \left(\sum_{a} m_{a} n_{a}\right) \left(1 + \frac{v_{PA}^{2}}{c^{2}}\right) R^{2} V^{\zeta} \right\rangle + \frac{1}{V'} \frac{\partial}{\partial \Psi} \left(V' \sum_{a} \Pi_{a}\right) = \sum_{a} \left\langle \int d^{3} v m_{a} v_{\zeta} (\mathcal{D}_{a} + \mathcal{I}_{a}) \right\rangle$$

Toroidal momentum flux is of $O(\delta^2)$.

$$\Pi_a = \Pi_a^{\text{cl}} + \Pi_a^{\text{ncl}} + \Pi_a^H + \Pi_a^{(E)} + \Pi_a^{\text{anom}}$$

Neoclassical and Anomalous Toroidal Momentum Fluxes in Toroidally Rotating Tokamaks

Neoclassical toroidal momentum flux of $O(\delta^2)$.

$$\begin{split} \Pi_{a}^{\mathrm{ncl}} &+ \Pi_{a}^{H} = -m_{a}cIV^{\zeta}\langle n_{a}R^{2}\rangle \frac{\langle BE_{\parallel}^{(A)}\rangle}{\langle B^{2}\rangle} - \frac{m_{a}c}{2e_{a}} \left\langle \int d^{3}v \left[m_{a} \left(R^{2}V^{\zeta} + \frac{I}{B}v_{\parallel}^{\prime} \right) + \mu \frac{R^{2}B_{P}^{2}}{B} \right] C_{a}^{L}(\overline{g}_{a}) \right\rangle \\ v_{\parallel}^{\prime} \mathbf{b} \cdot \nabla \overline{g}_{a} - C_{a}^{L}(\overline{g}_{a}) = \frac{1}{T_{a}} f_{a0}(W_{a1}X_{a1} + W_{a2}X_{a2} + W_{aV}X_{V} + W_{aE}X_{E}) \\ X_{V} \equiv -\frac{\partial V^{\zeta}}{\partial \Psi} = c \frac{\partial^{2}\Phi_{0}}{\partial \Psi^{2}} \qquad W_{aV} \equiv \frac{m_{a}c}{2e_{a}}v_{\parallel}^{\prime} \mathbf{b} \cdot \nabla \left[m_{a} \left(R^{2}V^{\zeta} + \frac{I}{B}v_{\parallel}^{\prime} \right)^{2} + \mu \frac{R^{2}B_{P}^{2}}{B} \right] \end{split}$$

Anomalous toroidal momentum flux of $O(\delta^2)$.

$$\begin{split} \Pi_{a}^{A} &= \left\langle \left\langle \int d^{3}v \ \hat{h}_{a}(\mathbf{X}) \hat{w}_{aV}(\mathbf{X}) \right\rangle \right\rangle \\ \hat{w}_{aV}(\mathbf{X}) &= \left\langle -\frac{c}{B} \nabla \left(\hat{\phi}(\mathbf{x}) - \frac{1}{c} (\mathbf{V}_{0} + \mathbf{v}') \cdot \hat{\mathbf{A}}(\mathbf{x}) \right) \times \mathbf{b} \cdot \nabla \Psi m_{a} (\mathbf{V}_{0} + \mathbf{v}') \cdot (R \hat{\boldsymbol{\zeta}}) \right\rangle_{\mathbf{X}} \\ \left[\frac{\partial}{\partial t} + \left(\mathbf{V}_{0} + v_{\parallel}' \mathbf{b} + \mathbf{v}_{da} - \frac{c}{B} \nabla \hat{\psi}_{a}(\mathbf{X}) \times \mathbf{b} \right) \cdot \nabla \right] \hat{h}_{a}(\mathbf{X}) - \left\langle C_{a}^{L} [\hat{f}_{a}(\mathbf{X} + \boldsymbol{\rho}_{a})] \right\rangle_{\mathbf{X}} \\ &= \frac{c}{B} \nabla \hat{\psi}_{a}(\mathbf{X}) \times \mathbf{b} \cdot \left[\nabla + \left\{ \frac{e_{a}}{T_{a}} \frac{\partial \langle \Phi_{1} \rangle}{\partial \Psi} + \frac{m_{a}}{T_{a}} \left(R^{2} V^{\zeta} + \frac{I}{B} v_{\parallel}' \right) \frac{\partial V^{\zeta}}{\partial \Psi} \right\} \nabla \Psi \right] f_{a0} + \frac{e_{a}}{T_{a}} \left[\left(\frac{\partial}{\partial t} + \mathbf{V}_{0} \cdot \nabla \right) \hat{\psi}_{a}(\mathbf{X}) \right] f_{a0} \end{split}$$

Quasi-axisymmetric System with Toroidal Velocity $V \sim v_{Ti}$

Toroidal flow
$$\mathbf{V} = V^{\zeta} \frac{\partial \mathbf{x}}{\partial \zeta}, \qquad V^{\zeta} = -c \frac{\Phi'_0(s)}{\chi'(s)} = \mathcal{O}(v_{Ti})$$

Equilibrium force balance

$$\left(\sum_{a} n_{a} m_{a}\right) \mathbf{V} \cdot \nabla \mathbf{V} = \frac{1}{c} \mathbf{J} \times \mathbf{B} - \nabla P$$

Toroidal component

$$\frac{1}{2} \left(\sum_{a} n_{a} m_{a} \right) (V^{\zeta})^{2} \frac{\partial g_{\zeta\zeta}}{\partial \zeta} = \frac{\chi'}{c} J^{s} = \frac{B^{\theta}}{c} \left(\frac{\partial B_{\zeta}}{\partial \theta} - \frac{\partial B_{\theta}}{\partial \zeta} \right)$$

Generally, $\partial g_{\zeta\zeta} / \partial \zeta \neq 0$ Therefore, $J^{s} \neq 0$

Then, neither Boozer nor Hamada coordinates can be constructed. Thus, high toroidal velocity on the order of ion thermal velocity does not seem to be allowed by simple quasiaxisymmetry condition only.

Summary

- Fluctuations observed in a high T_i LHD plasma are considered as ITG modes predicted from linear calculation by GKV-X.
- Zonal-flow response theory and simulation show that zonal flow generation and turbulence regulation are enhanced when the radial displacements of helical-ripple-trapped particles are reduced either by neoclassical optimization of the helical geometry lowering the radial drift velocity or by strengthening the radial electric field E_r to boost the poloidal rotation.
- The E_r effects appear through the poloidal Mach number M_p.
 For the same magnitude of E_r, higher zonal-flow response is obtained by using ions with heavier mass (favorable deviation from gyro-Bohm scaling).
- The momentum balance equation determining E_r in quasisymmetric helical system with stellarator symmetry is shown to be of O(δ³) by using a novel parity operator.