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Introduction	





Large Helical Device (LHD)	



R = 3.9 m   	


a = 0.6 m 	


V = 30 m3	


B = 3 ~ 4 T	



Max. parameters	


n = 1.1 x 1021 m-3   	


Te = 15 keV 	


TH = 5.2 keV	


<β> = 5.1 %	



       Heliotron configuration 	


No net plasma current required  	


      Suitable for steady-state operation 	



1-hour discharge 	





Tokamak	



Helical System	



B = B0  [ 1 - εt cos θ - εh cos (Lθ -Mζ) ] 

B 

Classification of 
particle orbits	



passing	



passing	



trapped	



trapped	



€ 

vdr b

B = B0  (1 - εt cos θ ) 

vdr radial drift of 	


helically-trapped 	


particles	



toroidally-trapped 	


particles	





Watanabe et al. NF2007 �

Eigenfunction of linear ITG 
mode electrostatic potential �

Sugama & Watanabe PoP2006�

Zonal-flow response	


(GAM,  residual ZF) �

Helical geometry influences ITG mode and zonal flow.   �



Gyrokinetic Equations (for ITG Turbulence)	
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Diamagnetic drift	



Quasineutrality condition & Adiabatic electron assumption	



Ion gyrokinetic equation for	



Ion polarization	



€ 

k⊥ρi ≈1, k⊥ρe <<1

δ f(x, v||, µ, t)	



€ 

vd ⋅ ∇Gyrocenter drift	



Mirror force	



€ 

−µ b ⋅ ∇Ω( ) ∂ /∂v||

Effects of 	


magnetic geometry	





Linear ITG Mode Analysis for ���
High-Ti LHD plasmas	







Results from Linear ITG 
Mode Analyses by GKV-X	



(See Poster by M. Nunami) �



Zonal Flows and ITG Turbulence 	





Gyrokinetic Simulation of EXB Zonal Flow Damping in Tokamaks	



Results from 	


Gyrokinetic Vlasov (GKV) code	



GAM 

After GAM oscillations are damped in the collisionless 
process (Landau damping), the zonal-flow potential 
approaches the theoretical value predicted by the 
Rosenbluth-Hinton theory. 	



 Undamped residual flow	


 [Rosenbluth & Hinton, PRL(1998)]	



Watanabe & Sugama, 	


Nucl.Fusion 46, 24(2006)	



initial (t=0)	


distribution	



trapped	



passing	

passing	



Real part of the ion gyrocenter 	


distribution function   δf(v||,µ)	



t  increases	





Structures of the perturbed gyrocenter distribution 	


for zonal-flow components (tokamak case) 	



Simulation results	



(rapid oscillations dropped)	



Useful information to derive 	


a kinetic-fluid closure model	



The gyrocenter distribution for residual 
zonal flow part can be described by the 
analytical solution.	



trapped	



passing	

passing	





Closure Model for Zonal Flow Dynamics in Tokamaks (I) 	



Parallel 
heat fluxes	



Fourth-order 
moments	



(l) long-time behavior���
   (residual zonal flow)	



(s) short-time behavior���
      (GAM damping)	



+	



using the analytical solution 	



different model from Beer & Hammett (1998)	



Sugama, Watanabe & 	


Horton, PoP(2007)	





Closure Model for Zonal Flow Dynamics in Tokamaks (II)	



(l) long-time behavior���
   (residual zonal flow)	



(s) short-time behavior���
      (GAM damping)	

+	



Fourth-order variables	



where the Maxwellian part of the perturbed distribution is taken into account.	



€ 

q||
(s) = −2 2

π
i n0vt

m
m
δT||m e

imθ

m
∑

€ 

q⊥
(s) = −

2
π
i n0vt

m
m
δT⊥m e

imθ

m
∑

Hammett-Perkins	


type model	



€ 

δ r|| ||,δ r||⊥,δ r⊥ ⊥( ) = 3,1, 2( ) ×T vt2δ n(g )



ITG-Mode-Driven Zonal Flow in Tokamaks	



Gyrofluid simulation shows a GAM 	


damping process toward the same	


residual zonal-flow level as given 	


by gyrokinetic simulation and the	


Rosenbluth-Hinton theory.	



Gyrofluid equations for ions combined with 	


the quasineutrality condition	



€ 

KR−H =1/(1+1.6q2 /εt
1/ 2)

Rosenbluth-Hinton formula 	
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ETG-Mode-Driven Zonal Flow	



Gyrofluid equations for electrons combined with 	


the Poisson equation	



Gyrofluid simulation shows the same	


residual zonal-flow level as given 	


by gyrokinetic simulation and the 	


analytical theory.	
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€ 

KL (t) =
1− (2 /π )1/ 2 (2εH )

1/ 2{1− gi1(t,θ}

1+G + E(t) n0 k⊥
2ρti

2( )

Collisionless Time Evolution of Zonal Flows in Helical Systems	



Response of the zonal-flow potential to a given initial potential   	



Response function    =   GAM component  +   Residual component	



GAM response function	


Long-time response function	



[Sugama & Watanabe, PRL (2005), Phys.Plasmas (2006)]	



k ρi
  < 1	



E(t) represents effects of shielding of potential 	


 due to helical-ripple-trapped particles.	



€ 

φk (t) = K(t) φk (0)

€ 

K(t) = KGAM (t)[1−KL (0)]+ KL (t)

€ 

K(t)→KL (t), KGAM (t)→ 0 as t→ +∞

€ 

K(t = 0) =1

€ 

KGAM (t) = cos(ωG )exp(− | γ | t)
(L=2,  M=10) �

B = B0  [ 1 - εt cos θ - εh cos (Lθ -Mζ) ] 
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Perturbed gyrocener distribution	

 Helical plasma	


q =1.5,  εh = 0.1,  L=2,  M=10�
t = 12.5 (R0/vti) �

€ 

v||€ 

v⊥

Simulation	

 Theory (rapid oscillations dropped)	



€ 

δ f (v|| , v⊥ )



For low collisionality,  better confinement is observed in the 
inward-shifted magnetic configurations, where lower neoclassical 
ripple transport but more unfavorable magnetic curvature driving 
pressure-gradient instabilities are anticipated.  

H. Yamada et al. (PPCF2001) 

Scenario: 
Neoclassical optimization contributes 
to reduction of anomalous transport 
by enhancing the zonal-flow level.  
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Anomalous transport is also 
improved in the inward  
shifted configuration. 

Results from LHD experiments 	



Inward-shifted	



Standard	



Outward-shifted	
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The maximum ITG growth rate is slightly 	


larger for the inward-shifted case. 	



For the inward-shifted case,  more unfavorable curvature but lower  q  and higher magnetic shear  s.	
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Standard        and      Inward-shifted     configurations	



ηi = Ln/LTi = 3	


Ln/R0 = 0.3	


Te/Ti = 1	



Larger residual zonal flow is found for 
the inward-shifted case.	



Response of zonal-flow potential	


to a given initial potential 	





Linear time evolution of zonal-flow potential 	



Smaller  χi  and larger zonal flows are found 
in the saturated turbulent state for the 
inward-shifted configuration than for the 
standard one !	



Turbulent thermal diffusivity	


and squared zonal-flow potential	



Larger residual zonal flow is found 
for the inward-shifted case.	
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Results from GKV simulation ( flux tube,  Er = 0 )	



Watanabe, Sugama & Ferrando, PRL(2008)	


Sugama, Watanabe & Ferrando, PFR(2009)	



The GKV turbulence simulations were carried 
out by the Earth Simulator (JAMSTEC). 	



ITG	


turbulence	



Potential contours obtained from six copies of flux tube	





Effects of Equilibrium Electric Field Er 	


on Zonal Flows in Helical Systems	



In helical systems	


Er  is given from ambipolar condition of radial particle fluxes.	


Er  reduces neoclassical ripple transport.	



How does Er influence zonal flows and anomalous transport?	





Effects of  Er  on gyrokinetic equation and zonal flows 	



Gyrokinetic equation for 	
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€ 

ωE = −
c Er

r0 B0
angular velocity 	


due to ExB drift	



€ 

α = θ −ζ /q

gyrophase average of 
zonal-flow potential	



field line label	



In helical systems,  α -dependence appears in                  and                       . 	



€ 

µ ˆ b ⋅ ∇Ω( )

€ 

k r ⋅ vd

Therefore, even if the zonal-flow potential  φ  is independent of   α  ,  	


δ f   comes to depend on α . 	



Thus,  ωE   influences  δ f   and accordingly φ  through quasineutrality condition. 	





Effects of Equilibrium Er on Zonal-Flow Response	



Equilibrium Er field generates a ExB component to the velocity. 

Mynick & Boozer, PoP(2007)  	


Action-Angle Formulation	



B

Er 

vEXB 

vdr 

Radial drift of 	


helically-trapped 	


particles	



Orbit of helically-trapped 	


particles modified by Er	



Flux 
surface	



ΔE	



Poloidal ExB rotation of helically-
trapped particles with reduced 

radial displacements  ΔE  will 
decrease the shielding of zonal-
flow potential and increase its 
response.  



Classification of particle orbits in the presence of  Er	



θ	



κ2 trapping 	


       parameter	



π	

-π	

 0	



κ2=1	



passing	

helically	


trapped	


(closed)	



ExB 	


drift	



ΔE	



helically	


trapped	


(unclosed)	



toroidally	


trapped	



ExB 	


drift	

 transition	



points	

ΔE	



radial displacement of	


helically-trapped particle	



€ 

ΔE ~ r0
vdr
vE×B

€ 

κ 2 =
1− λB0[1−εT (θ) −εH (θ)]

2λB0εH (θ)

trapping parameter	



Cary et al., PF (1988)	


Wakatani (1998) 	



€ 

λ =
1
2
mv 2 µ

passing	



helically trapped	


                (closed)	



helically trapped	


(unclosed)	



toroidally trapped	





Solution of gyrokinetic equation to describe long-time 
evolution of zonal flows  [Sugama & Watanabe, PoP(2009)]	
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Perturbed particle distribution function	



Polarization	


(classical & neoclassical)	



Initial condition &	


Turbulence source	
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Average along the orbit	



For particles which show transitions	
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Zonal-flow generation can be enhanced when	


Ght  and Gh decreases with neoclassical optimization (which reduces radial drift velocity vdr )	


and when poloidal Mach number                                                     increases 	



with increasing  Er  and using heavier ions.	



Long-time zonal-flow response to the 	


initial condition and turbulence source	
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t
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For radial wavenumbers  krρti < 1  (ITG turbulence)  and  krΔE < 1, the zonal-flow 
potential is derived from the quasineutrality condition as [Sugama & Watanabe, PoP(2009)]	



€ 

Mp ≡ (cEr B0) (rvt i Rq)

Geometrical factors  G’s  represents  shielding effects  of  neoclassical polarization due to	


particles motions in different orbits. 	



Gp : passing	


Gt : toroidally-trapped	



Ght : helicallly-trapped (unclosed orbit)	



Gh : toroidally-trapped (closed orbit)	



€ 

G ∝ (population)

× Δ r ρ( )2



No transitions occur.  	



Response to the initial condition	



€ 

φk (t) =
φk (0)

1+Gp +Gt + Mp
−2(Gh t +Gh )(1+ Te /Ti)

Assume the initial distribution to have Maxwellian dependence	


Then, we obtain	



For the single-helicity configuration 	



€ 

B = B0[1−εt cosθ −εh cos(Lθ −Mς )] (εh : independent ofθ)
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2eφ(0) /Ti

(no turbulence source)	
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Gh t = 0, Gh = (15π /4)q2(2εh )
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This corresponds to the case considered by previous works.	


Mynick & Boozer, PoP(2007)	


Sugama, Watanabe & Ferrando, PFR(2008)	





Extention of GKV code to poloidally global model	



GKV code is extended from the flux tube to the poloidally global model for 
studying effects of Er on zonal flows in helical systems [Watanabe, IAEA FEC 2008].  	



・Standard configuration model (single helicity) :	



・Linear simulations for time evolution of zonal flows are done using	


           129  Fourier modes  in the   α    direction , 	


           1, 536  grid points  in the  ζ   direction,  and   	


            ( 512,  48 ) grid points in the  ( v|| ,  µ )  space 	


           for a fixed radial wavenumber   kr . 	



€ 

α ≡θ −ζ /q : field-line label	



€ 

ζ : toroidal angle	



・Inward-shifted configuration model :	



€ 

B = B0[1−εt cosθ −εh cos(Lθ −Mς )], εt = 0.1, εh = 0.1, q =1.5, L = 2, M =10

€ 

εL+1 = −0.02, εL−1 = −0.08( )Sideband helicity components                     	


are included. 	





Collisionless time evolution of zonal flows 	


in helical configurations with Er 	



It is clearly shown for the inward-shifted model configuration that the 	


residual zonal-flow potential amplitude (observed after Landau damping of 
GAM) is enhaced by increasing Er . 	



φ(t)/φ(0)	

 φ(t)/φ(0)	





The residual zonal-flow potential as a function of   kr ρti  	


for  Mp = 0    and    Mp = 0. 3  	



Theoretical results are derived 	



by assuming   kr ρti << 1  .	



Different  kr ρti  dependences 	


for Mp = 0 and Mp = 0. 3 are 
theoretically predicted and 	


confirmed by simulation.	



Inward-shited configuration	



[To be published in CPP]	





Dependence of the residual zonal-flow potential on the 
poloidal Mach Number (Mp) for  kr ρti  = 0.065	



Qualitative agreement 

between theory and 

simulation is verified.	



Residual zonal-flow potential 
increases with increasing Mp .	



Inward-shited model configuration	



More details are found	


in poster by T.-H. Watanabe	



[submitted to PPCF]	



φ(t)/φ(0)	


Theory 	


(kr ρti  = 0.065)	



Theory 	


(kr ρti  = 0)	



Simulation 	


(kr ρti  = 0.065)	





Momentum Balance and Radial Electric Field in ���
Quasisymmetric Systems with Stellarator Symmetry	





Basic Boltzmann Kinetic Equation for description of  
Collisional and Turbulent Transport	



Equilibrium 	


magnetic field �

Boltzmann kinetic equation �

Ensemble-averaged kinetic equation �



Classical,  Neoclassical,  and Anomalous Transport 
of Particles and Heat       [Sugama et al. PoP1996]	



The gyrophase (ξ) -average part  and  the oscillating part of an aribtrary 

function  F is defined by                                  and                        respectively.�

The ensemble-averaged kinetic equation is divided as  �

Particle flux �

Heat flux�

Second order part of         in   δ ~  ρ / L  �



Momentum Balance	



density	

 particle flux �

pressure tensor�

friction force�

turbulent electromagnetic force �



Momentum Balance in the direction tangential to the flux surface	
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(c1, c2 : constants)	



(s, θ, ζ) : Hamada coordinates �

The surface-averaged radial current  �



Quasisymmetry   ���
[Boozer(1983),  Nuhrenberg(1988),  Helander&Simakov (2008)]	



quasi-axi-symmetry            (c1,  c2) = (0, 1) �
quasi-poloidal-symmetry    (c1,  c2) = (1, 0)�

The ambipolarity	



is satisfied automatically up to  O(δ).  �

The O(δ) viscosity component in the quasisymmetry 
direction vanishes :�



Stellarator Symmetry	



 Magnetic field strength �

Metric tensor components �

 Magnetic field components �



Parity Transformation associated with Stellarator Symmetry	



Expansion in    η ~ δ ~  ρ / L �

Parity operator             is defined by �

In the presence of stellarator symmetry, Boltzmann and 
Maxwell equations are invariant under parity transformation �

€ 

ea →η−1ea(Put                      in Boltzmann and Maxwell eqs.)	





Momentum Transport Fluxes in Stellarator Symmetric Systems	



Parity of solutions �

When  j  is even,  the  O(δ j )  part of  radial transport fluxes 
of poloidal and toroidal momentum vanish. �



Momentum Balance in Quasisymmetric Systems 
with Stellarator Symmetry	



In quasisymmetric systems with stellarator symmetry, the 
momentum transport fluxes vanish up to O(δ 2 ), and the 
ambipolarity is automatically satisfied up to O(δ 2 ). 	
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The momentum balance equation determing  Es  is of O(δ 3 ) : 	





Momentum Balance in Toroidally Rotating Tokamaks ���
   with Toroidal Velocity V ~ vTi   [Sugama& Horton, PoP1998]	



Toroidal momentum flux is of  O(δ 2 ).	



The momentum balance equation determining  Es  is of O(δ 2 ) : 	



Toroidal flow is proportional to the radial electric field  �



Neoclassical and Anomalous Toroidal Momentum Fluxes ���
in Toroidally Rotating Tokamaks 	



Neoclassical toroidal momentum flux of  O(δ 2 ).	



Anomalous toroidal momentum flux of  O(δ 2 ).	





Quasi-axisymmetric System with Toroidal Velocity V ~ vTi  	



Toroidal flow �

Equilibrium force balance�

Toroidal component�

Generally, � Therefore, �

Then, neither Boozer nor Hamada coordinates can be constructed. 	


Thus, high toroidal velocity on the order of ion thermal velocity 
does not seem to be allowed by simple quasiaxisymmetry condition 
only. 	





Summary	


   Fluctuations observed in a high Ti LHD plasma are considered as ITG 	


     modes predicted from linear calculation by GKV-X. 	



   Zonal-flow response theory and simulation show that zonal flow generation 	


     and turbulence regulation are enhanced when the radial displacements of 	


     helical-ripple-trapped particles are reduced either by neoclassical 	


     optimization of the helical geometry lowering the radial drift velocity or by 	


     strengthening the radial electric field Er to boost the poloidal rotation.	



   The Er effects appear through the poloidal Mach number Mp. 	


     For the same magnitude of  Er,  higher zonal-flow response is obtained by 	


     using ions with heavier mass (favorable deviation from gyro-Bohm scaling).	



   The momentum balance equation determining  Er  in quasisymmetric 	


     helical system with stellarator symmetry is shown to be of   O(δ 3 )  	


     by using a novel parity operator. 	




