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Helical geometry influences ITG mode and zonal flow.

Eigenfunction of linear ITG Zonal-flow response
mode electrostatic potential (GAM, residual ZF)
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Gyrokinetic Equations (for ITG Turbulence)
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Linear ITG Mode Analysis for
High-7'; LHD plasmas



Fluctuation in High-T: discharge in LHD

K. Tanaka et al., to be appeared in Plasma Fusion Res.
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Results from Linear ITG
Mode Analyses by GKV-X

Radial profiles of y

(See Poster by M. Nunami)

max

2233 s
1.833 s

I
Wt
¢t

*Growth rates are peaked at

p~0.65 (t=2.233s),
p~0.85 (t=1.833s).
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Z.onal Flows and ITG Turbulence
in Helical Systems



Results from LHD experiments

For low collisionality, better confinement is observed in the
inward-shifted magnetic configurations, where lower neoclassical
ripple transport but more unfavorable magnetic curvature driving
pressure-gradient instabilities are anticipated.

Anomalous transport is also
G R A improved in the inward

shifted configuration.
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Collisionless Time Evolution of Zonal Flows in Helical Systems
[Sugama & Watanabe, PRL (2005), Phys.Plasmas (2006)]

Response of the zonal-flow potential to a given initial potential |k p. <1
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Results from GKYV simulation ( flux tube, E,=0) | Turbulent thermal diffusivity
and squared zonal-flow potential
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Larger residual zonal flow is found
for the inward-shifted case.
Watanabe, Sugama & Ferrando, PRL(2008)

The GKYV turbulence simulations were carried 40 40 -
out by the Earth Simulator (JAMSTEC). Potential contours obtained from six copies of flux tube
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Effects of Equilibrium Electric Field E,
on Zonal Flows in Helical Systems

In helical systems

E . is given from ambipolar condition of radial particle fluxes.

E . reduces neoclassical ripple transport.

How does E . influence zonal flows and anomalous transport?



Effects of I, on gyrokinetic equation and zonal flows

gyrophase average of

Gyrokinetic equation for k, =k Vr Zonal'ﬂ"i potential
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angular velocity __¢ E, field line label
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In helical systems, O.-dependence appearsin K v, and M(f)'VQ)

Therefore, even if the zonal-flow potential ¢ is independent of O ,
0 f comes to depend on CX.

Thus, @y influences 0 f and accordingly ¢ through quasineutrality condition.



Classification of particle orbits in the presence of E,

Cary et al., PF (1988)
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Solution of gyrokinetic equation to describe long-time
evolution of zonal flows [Sugama & Watanabe, PoP(2009)]

Perturbed particle distribution function
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Long-time zonal-flow response to the
initial condition and turbulence source

For radial wavenumbers k. p, <1 (ITG turbulence) and kA, <1, the zonal-flow
potential is derived from the quasineutrality condition as [Sugama & Watanabe, PoP(2009)]

<n51 [ [1 +ik (A, - <Air>orbit)][5 £EO)+Fy [18,0 dt]>
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(k.p,)[1+G, + G, +(M (G, +G,)1+T.IT)]

Geometrical factors G’s represents shielding effects of neoclassical polarization due to

particles motions in different orbits.

G o« (population) G, : passing G,, : helicallly-trapped (unclosed orbit)

x(A,/p) G, : toroidally-trapped G, : toroidally-trapped (closed orbit)

Zonal-flow generation can be enhanced when

G,, and G, decreases with neoclassical optimization (which reduces radial drift velocity Vi)

and when poloidal Mach number |M = ‘(CEr /By)/(rv,;/R q)‘

with increasing E,. and using heavier ions.

increases




Response to the initial condition

Assume the initial distribution to have Maxwellian dependence s ) = [51(0)/n,]F,,

Then, we obtain Sn'¥(0)/n, = (k,p,)’ep0)/T
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This corresponds to the case considered by previous works.

Mynick & Boozer, PoP(2007)
Sugama, Watanabe & Ferrando, PFR(2008)



The residual zonal-flow potential as a function of k&, p,

for Mp=0 and Mp=().3

Different k. p, dependences
for M,=0and M,=0. 3 are
theoretically predicted and

confirmed by simulation.

Theoretical results are derived

by assuming k. p.<<1 .

[To be published in CPP]
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Momentum Balance and Radial Electric Field in
Quasisymmetric Systems with Stellarator Symmetry



Basic Boltzmann Kinetic Equation for description of
Collisional and Turbulent Transport

Equilibrium

i B =4'Vs 0 'V¢ s = DLgVs ‘
magnetic field Vs X VO +X'VE X Vs = BVs + BgVO + BV

Boltzmann kinetic equation
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Classical, Neoclassical, and Anomalous Transport
of Particles and Heat

[Sugama et al. PoP1996]

The gyrophase (&) -average part and the oscillating part of an aribtrary

function F is definedby F=(27)"'§d{F and F=F—-F respectively.
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Momentum Balance

%(720,772(111(1) = -V -P,+ ngue, (E + l:—a X B) +F + Ka
density ,, = [, f, particle flux n,u, = [ v f,v
pressure tensor P, = [dPv famgvv
friction force Foi = [d% C,(fa)mav
turbulent electromagnetic force K, = [dv D,v
S K = V(o (BB BB) - (2 2)1) o S (BxB)

B d (Sem
—V'TE]\-I_ ()f < (-2 )



Momentum Balance in the direction tangential to the flux surface
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Quasisymmetry
[Boozer(1983), Nuhrenberg(1988), Helander &Simakov (2008)]

IB iy oB 0
oo T Fac
quasi-axi-symmetry (¢, ¢,)=(0,1)

quasi-poloidal-symmetry (c,, ¢,) =(1,0)

The O(9) viscosity component in the quasisymmetry
direction vanishes :

< (% ; 2%) [V {Pubb + P, (I~ bb)}]>

S <(P,|a — PL,) ((-13’; + (-23’:> : VInB> =0
The ambipolarity Z ea (nqul) =0
is satisfied automaticillly up to O(9).



Stellarator Symmetry

Magnetic field strength
B(Sf _9? _C) — B(S’ 9 q)

Magnetic field components
Bb(s,—0.—() = B%(s.,0,0).
B@(S. —0, —Q) — BQ(S. g, Q)
Be(s,—0.—() = —Bg(s.6. Q).

Metric tensor components

gss(s, =0, —C) = gss(s,0,Q), geo(s, —0,—C) = gee(s.6,Q).
goc(s, =0, —C) = goc(s,0,C),  gee(s, —0,—C) = gee(s,0,C),
gso(s, —0,—C) = —JSO(S 0.C),  gsc(s,—0.—C) = —gsc(5.0,C).
g(s, =0, =) = g(s,0,0),

>
k.

|
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Parity Transformation associated with Stellarator Symmetry

Expansionin 71~ O~ o/ L (Put e, —> n_lea in Boltzmann and Maxwell eqs.)

fo(s.0.C, 0507 08 t,n) = farr (5.0, 0%t) + 1 far(s. 6, C 05,07 08, nt)
+ 1% faa(s. 0. C. 05, 0% 08 %) + - - -,
O(s,0,C,t,n) =n0i(s,n°t) + 1n°Dy(s,0,C, n°t)

Parity operator 7P is defined by
(PQ)(s,0,¢C, 05,07, 0%, t,n) = Q(s, —0, —C, v, =07, =05, t, —n)

In the presence of stellarator symmetry, Boltzmann and
Maxwell equations are invariant under parity transformation

fa T ]Ea — P(fa+fa)
ES+ES. Eg—f—Eg. EC+EC — _P(ES+ES)P(E9+E9) P(EC+EC)
BS—I—BS. BQ—I—BQ. B(—I-BC — _P(BS+BS)- P<BH+BH)-P<BC+BC)



Momentum Transport Fluxes in Stellarator Symmetric Systems

Parity of solutions
Plo = fa — PO =]
fils, =0, —C. 0%, —v?, —0¢ n*t) = (=1)7 f;(s.6.C,v%, 0%, 0%, n°t)

(s, =0, —C,n’t) = (1) Dy(s,6,(, 1)

When j is even, the O(5/) part of radial transport fluxes

of poloidal and toroidal momentum vanish.

(PO);y = ((P9):) = (T@)s) = (TEE) =0 (for even j)



Momentum Balance in Quasisymmetric Systems
with Stellarator Symmetry

In quasisymmetric systems with stellarator symmetry,
the momentum transport fluxes vanish up to O(6°), and
the ambipolarity is automatically satisfied up to O(67).

The momentum balance equation determing E_ is of O(67) :

J | (co — cq/ AT S, Ngmyg
O XAy 4 T Taltee )
ot dme (coX” — e1?)

i} ~ - 2 -
My ¢ Op, : x| ngV’ p ¢
+ — ; Co— + — (¢1Bg + coBr) ( cou’ — cqu
Z(og\'«lz.-'){ os< 7 > gz (150 2B0) {om — cxv)




Summary

® Fluctuations observed in a high 7, LHD plasma are considered as ITG
modes predicted from linear calculation by GKV-X.

® Zonal-flow response theory and simulation show that zonal flow generation
and turbulence regulation are enhanced when the radial displacements of
helical-ripple-trapped particles are reduced either by neoclassical
optimization of the helical geometry lowering the radial drift velocity or by
strengthening the radial electric field E, to boost the poloidal rotation.

® The E, effects appear through the poloidal Mach number M,
For the same magnitude of E,, higher zonal-flow response is obtained by
using ions with heavier mass (favorable deviation from gyro-Bohm scaling).

® The momentum balance equation determining E . in quasisymmetric
helical system with stellarator symmetry is shown to be of O(67)
by using a novel parity operator.





