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Watanabe et al. NF2007

Eigenfunction of linear ITG
mode electrostatic potential

Sugama & Watanabe PoP2006

Zonal-flow response
(GAM,  residual ZF)

Helical geometry influences ITG mode and zonal flow.   



Gyrokinetic Equations (for ITG Turbulence)
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Linear ITG Mode Analysis for
High-Ti LHD plasmas





Results from Linear ITG
Mode Analyses by GKV-X

(See Poster by M. Nunami)



Zonal Flows and ITG Turbulence
in Helical Systems



For low collisionality,  better confinement is observed in the
inward-shifted magnetic configurations, where lower neoclassical
ripple transport but more unfavorable magnetic curvature driving
pressure-gradient instabilities are anticipated.

H. Yamada et al. (PPCF2001)

Scenario:
Neoclassical optimization contributes
to reduction of anomalous transport
by enhancing the zonal-flow level.
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Anomalous transport is also
improved in the inward
shifted configuration.

Results from LHD experiments 
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Outward-shifted
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Collisionless Time Evolution of Zonal Flows in Helical Systems

Response of the zonal-flow potential to a given initial potential

Response function    =   GAM component  +   Residual component

GAM response function
Long-time response function

[Sugama & Watanabe, PRL (2005), Phys.Plasmas (2006)]

k ρi
  < 1

E(t) represents effects of shielding of potential
 due to helical-ripple-trapped particles.
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Linear time evolution of zonal-flow potential

Smaller  χi  and larger zonal flows are
found in the saturated turbulent state for
the inward-shifted configuration than for
the standard one !

Turbulent thermal diffusivity
and squared zonal-flow potential

Larger residual zonal flow is found
for the inward-shifted case.
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Results from GKV simulation ( flux tube,  Er = 0 )

Watanabe, Sugama & Ferrando, PRL(2008)
Sugama, Watanabe & Ferrando, PFR(2009)

The GKV turbulence simulations were carried
out by the Earth Simulator (JAMSTEC).

ITG
turbulence

Potential contours obtained from six copies of flux tube



Effects of Equilibrium Electric Field Er

on Zonal Flows in Helical Systems

In helical systems
Er  is given from ambipolar condition of radial particle fluxes.
Er  reduces neoclassical ripple transport.

How does Er influence zonal flows and anomalous transport?



Effects of  Er  on gyrokinetic equation and zonal flows

Gyrokinetic equation for 
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In helical systems,  α -dependence appears in                  and                       . 
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Therefore, even if the zonal-flow potential  φ  is independent of   α  ,  
δ f   comes to depend on α . 

Thus,  ωE   influences  δ f   and accordingly φ  through quasineutrality condition. 



Classification of particle orbits in the presence of  Er
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Solution of gyrokinetic equation to describe long-time
evolution of zonal flows  [Sugama & Watanabe, PoP(2009)]
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Zonal-flow generation can be enhanced when
Ght  and Gh decreases with neoclassical optimization (which reduces radial drift velocity vdr )
and when poloidal Mach number                                                     increases 

with increasing  Er  and using heavier ions.

Long-time zonal-flow response to the
initial condition and turbulence source
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For radial wavenumbers  krρti < 1  (ITG turbulence)  and  krΔE < 1, the zonal-flow
potential is derived from the quasineutrality condition as [Sugama & Watanabe, PoP(2009)]
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particles motions in different orbits.
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No transitions occur.  

Response to the initial condition
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Assume the initial distribution to have Maxwellian dependence
Then, we obtain

For the single-helicity configuration
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This corresponds to the case considered by previous works.
Mynick & Boozer, PoP(2007)
Sugama, Watanabe & Ferrando, PFR(2008)



The residual zonal-flow potential as a function of   kr ρti
for  Mp = 0    and    Mp = 0. 3

Theoretical results are derived 

by assuming   kr ρti << 1  .

Different  kr ρti  dependences

for Mp = 0 and Mp = 0. 3 are
theoretically predicted and
confirmed by simulation.

Inward-shited configuration

[To be published in CPP]



Momentum Balance and Radial Electric Field in
Quasisymmetric Systems with Stellarator Symmetry



Basic Boltzmann Kinetic Equation for description of
Collisional and Turbulent Transport

Equilibrium 
magnetic field 

Boltzmann kinetic equation

Ensemble-averaged kinetic equation



Classical,  Neoclassical,  and Anomalous Transport
of Particles and Heat       [Sugama et al. PoP1996]

The gyrophase (ξ) -average part  and  the oscillating part of an aribtrary

function  F is defined by                                  and                        respectively.

The ensemble-averaged kinetic equation is divided as  

Particle flux

Heat flux

Second order part of         in   δ ~  ρ / L  



Momentum Balance

density particle flux

pressure tensor

friction force

turbulent electromagnetic force



Momentum Balance in the direction tangential to the flux surface

! 

"

" t
n
a
m

a
c
1
u
a# +

(S
EM
)#

c
2

$ 

% 
& 

' 

( 
) + c2 ua* +

(S
EM
)*

c
2

$ 

% 
& 

' 

( 
) 

+ 
, 
- 

. 
/ 
0 a

1

= 2
1

V '

"

" s
V ' 3s 4 P

a

a

1 2T
EM

$ 

% 
& 

' 

( 
) 4 c1

" x

"#
+ c

2

" x

"5

$ 

% 
& 

' 

( 
) 

6 

7 
8 
8 

9 

: 
; 
; 

+
1

c
2c

1
<'+c

2
='( ) e

a
n
a
u
a

s

a

1

(c1, c2 : constants)

(s, θ, ζ) : Hamada coordinates

The surface-averaged radial current  



Quasisymmetry
[Boozer(1983),  Nuhrenberg(1988),  Helander&Simakov (2008)]

quasi-axi-symmetry            (c1,  c2) = (0, 1) 
quasi-poloidal-symmetry    (c1,  c2) = (1, 0)

The ambipolarity

is satisfied automatically up to  O(δ).  

The O(δ) viscosity component in the quasisymmetry
direction vanishes :



Stellarator Symmetry

 Magnetic field strength

Metric tensor components

 Magnetic field components



Parity Transformation associated with Stellarator Symmetry

Expansion in    η ~ δ ~  ρ / L

Parity operator             is defined by

In the presence of stellarator symmetry, Boltzmann and
Maxwell equations are invariant under parity transformation
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(Put                      in Boltzmann and Maxwell eqs.)



Momentum Transport Fluxes in Stellarator Symmetric Systems

Parity of solutions

When  j  is even,  the  O(δ j )  part of  radial transport fluxes
of poloidal and toroidal momentum vanish.



Momentum Balance in Quasisymmetric Systems
with Stellarator Symmetry

In quasisymmetric systems with stellarator symmetry,
the momentum transport fluxes vanish up to O(δ 2 ), and
the ambipolarity is automatically satisfied up to O(δ 2 ).
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The momentum balance equation determing  Es  is of O(δ 3 ) :



Summary
  Fluctuations observed in a high Ti LHD plasma are considered as ITG
     modes predicted from linear calculation by GKV-X.

  Zonal-flow response theory and simulation show that zonal flow generation
     and turbulence regulation are enhanced when the radial displacements of
     helical-ripple-trapped particles are reduced either by neoclassical
     optimization of the helical geometry lowering the radial drift velocity or by
     strengthening the radial electric field Er to boost the poloidal rotation.

  The Er effects appear through the poloidal Mach number Mp. 
     For the same magnitude of  Er,  higher zonal-flow response is obtained by 
     using ions with heavier mass (favorable deviation from gyro-Bohm scaling).

  The momentum balance equation determining  Er  in quasisymmetric 
     helical system with stellarator symmetry is shown to be of   O(δ 3 )  
     by using a novel parity operator. 




