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In most systems, the net result of microturbulence is to
drive the pressure gradient away from ideal boundary.

In a dipolar geometry, the opposite is true.



Dipolar B-field created by a
superconducting magnetically
levitated current ring
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Simulation Model: Gyrokinetic GS2 Code

- Solves nonlinear gyrokinetic eqns for ions and electrons

- 5 dimensions (?,v”,vl)

- Valid for arbitrary k p;, k,p,

- Includes: FLR, Landau damping, trapped particle effects, ...
- Flux tube simulation domain (k, ~1 / p, >> 1/L)

- requires: w<< Q k<< k;

Our simulations: Electrostatic (f << 1)



Two geometries: Ring-dipole and Z-pinch

(i) Ring-dipole

- near center of LDX plasma

- High mirror ratio B, /B, ~ 37
- High trapped particle fraction

(ii) Z-pinch
- Limiting case close to the ring

- B-field is circular, uniform along B

- trapped particles negligible

\\\
ical dipolar field line
B,/ Bmin~ 37

max

Zpinch-like field line
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The transport levels are comparable with an
outboard-midplane normalization in dipole case




Two main instabilities:
Ideal interchange and Entropy modes

Ideal MHD Interchange mode:
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— Similar expression for ring dipole

We consider ideally stable plasmas and explore the fransport
due to small scale (non-MHD) entropy modes



Entropy mode (non-MHD)
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- Our simulations show these modes drive experimentally
important levels of transport in ideally stable plasmas:

I'=nV,,, with Vg, ~ 50 m/s or more

- Observed in LDX but role in transport still unclear



Typical Simulation:

- Electrostatic potential ® generated by entropy modes

y
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e Three phases:
(1) Linear growth
(2) Nonlinear onset of KH
(3) Nonlinear turbulent state



Two Entropy mode branches: n>2/3 and n<2/3 (n=L,/L;)
n < 2/3 branch n>2/3 branch
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Why two branches?
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Consider the specific entropy: S —nf/?’ RN

l@_ gldnlldT_Zl 1
Sdr  3ndr

" Tdr 3L, Lr

: L,
Thus since n = .
I Result of transport:
2 1dS L, increases 1dS
It p<g then —=2>0 " reases ° G gp ¥
2 1dS L, decreases L dS
1t n> § then g% <0 L, increases >0 55 T

Transport removes entropy gradient



Entropy mode transport expected to drive LDX profiles toward

n = 2/3 and marginal interchange stability
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- N>2/3 branch: Particle flux negative

Temp fluxes positive |~ Transport decreases n

- N<2/3 branch: Particle flux positive

Temp fluxes negative -> Transport increases n




Observed LDX profiles consistent with
n ~ 2/3 and marginal interchange stability

[Boxer et al, Nature Physics, 2010]

"notch” region marginal MHD
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As argued in Boxer et al, may also result from ideal
inferchange turbulence - more observations needed



Physical origin of particle pinch

- At high-n , main ferms contributing are...
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Good agreement with GK quasi-linear theory
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- Quasi-linear theory is consistent with GS2 simulations
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Summary

e Entfropy mode transport expected to drive LDX
toward marginal ideal-interchange stability and n=2/3.
In a dipolar field (B~1/r3) this means:

pV5/3:const, Vxrt = pocr_20/3

p/n’3 =const = nocl/V ocr 4
T/n?3 =const = T oxr 83 (n=2/3)

- Consistent with Earth’s magnetosphere and
recent LDX observations [Boxer et al, Nature Physics, 2010]
- May also result from ideal interchange turbulence

e Further work needed fto determine role of entropy mode
transport in LDX



