Gyrokinetic simulations of reconnection – an update

- W. Dorland
- J. Drake
- G. Howes
- F. Jenko
- S. Kobayashi
- N. Loureiro
- R. Numata
- M. Pueschel
- P. Ricci
- B. Rogers
- A. Schekochihin
- T. Tatsuno

Simulation models: AstroGK and GENE

- Nonlinear gyrokinetic equations for both electrons and ions
- 5D (3 spatial but 2D for now, 2 velocity)
- Trapped particles and EM effects
- Valid even for large $k_{\perp}\rho_i$ and $k_{\perp}\rho_e$
- Collision operator in AGK consistent with Spitzer resistivity
- Magnetosonic wave ordered out: $\delta p_{\perp} + B_{z0} \delta B_z / (4\pi) \simeq 0$
- Implementation of δB_z in GENE in progress

When is the AGK model applicable to reconnection?

• Low frequency:
$$\ \ \displaystyle rac{d}{dt} \ll \Omega_{ci}$$

• Perturbations generated by reconnection must be small:

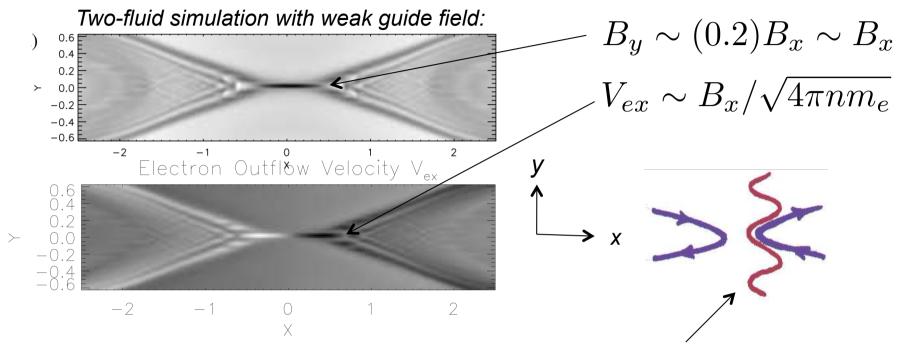
$$\frac{\tilde{n}}{n_0} \ll 1 \;, \quad \frac{\tilde{T}}{T_0} \ll 1 \;, \quad \frac{\delta B_{\parallel}}{B} \ll 1 \ldots$$

• δB_z given by $\delta p_{\perp} + B_{z0} \delta B_z / (4\pi) \simeq 0$

For fixed β , ρ_i , T_i/T_e , m_i/m_e , these can usually be satisfied if the guide field B_{z0} is sufficiently large.

But: (1) the required B_{z0} may be <u>very</u> large (2) important parameter restrictions may apply

How strong must B_{z0} be?



Modeling the electron layer as a standing wave, expect $\delta p_{\perp} + B_{\sim 0} \delta B_{\sim} / (4\pi) \simeq 0$ to be valid when

$$p_{\perp} + D_{z0} D_{z} / (4\pi) \simeq 0$$
 to be valid when

$$C_m^2 = C_A^2 + C_s^2 > B_x^2 / (4\pi n m_e)$$
 or
 $B_z / B_x > \sqrt{m_i / m_e} / \sqrt{1 + \beta/2}$

More generally: $\partial_t \tilde{B}_z = -\hat{z} \cdot \nabla \times \vec{E}$

Parameter restrictions?

Example:

- For $\beta \ll 1$ and large ${\rm B_{z0}}$ typically:

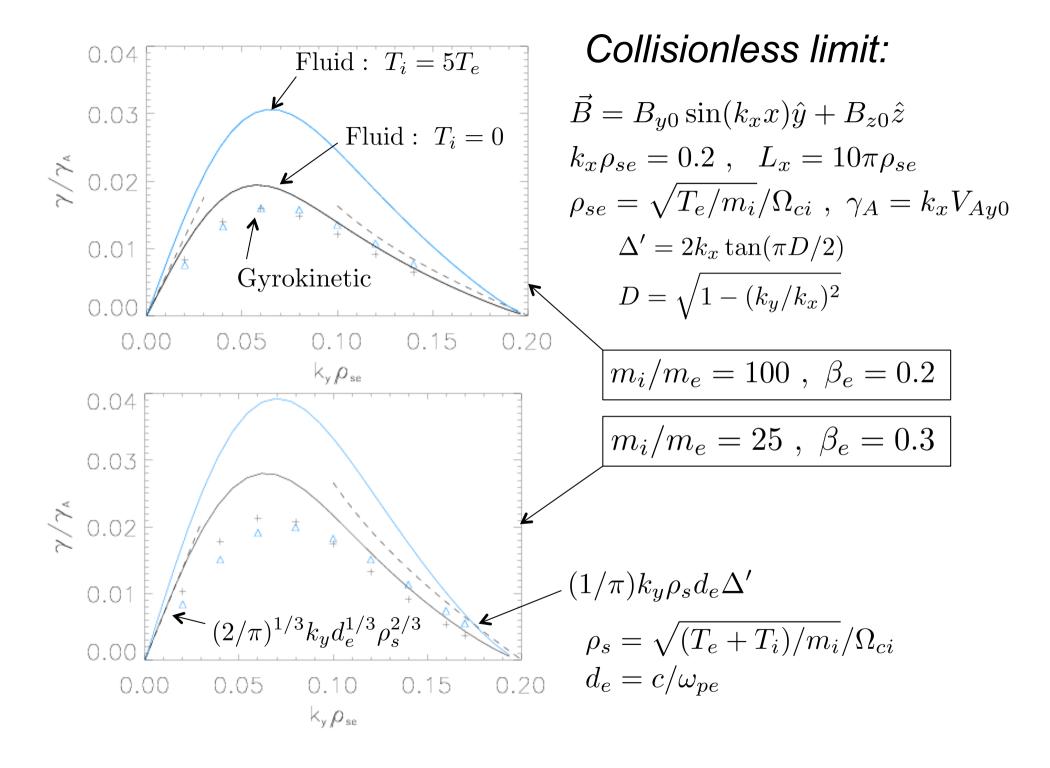
$$\frac{\tilde{n}}{n_0} \sim \rho_s^2 \nabla_{\perp}^2 \frac{e\tilde{\phi}}{T} \sim \frac{k_{\perp} V_E}{\Omega_{ci}} \quad \text{where} \quad \rho_s = \frac{c_s}{\Omega_{ci}}$$

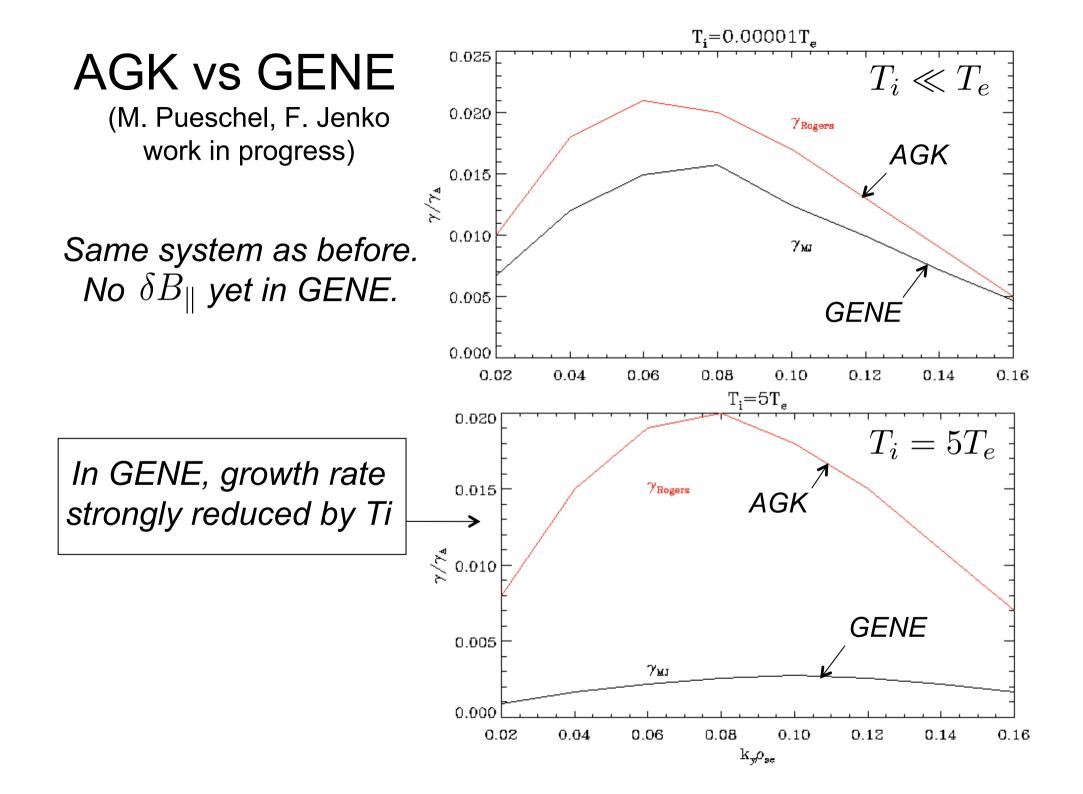
With $k_{\perp} \sim 1/\rho_s$ and $V_E \sim V_{Ax} \sim B_x/\sqrt{4\pi\rho}$ where $B_x = B_{rec}$:

$$\frac{\tilde{n}}{n_0} \sim \frac{k_{\perp} V_E}{\Omega_{ci}} \sim \frac{V_{Ax}}{c_s} \sim \sqrt{\frac{2}{\beta_x}} \quad \text{where} \quad \beta_x = \frac{8\pi p_0}{B_x^2}$$
$$Thus \quad \frac{\tilde{n}}{n_0} \ll 1 \quad \Rightarrow \quad \beta_x \gg 1 \quad \text{(or worse)}$$

• The same condition results from:

 $\omega \ll \Omega_{ci}$ with $\omega \sim k_{\parallel} V_A \sim k_x V_{Ax}$ and $k_x \sim 1/\rho_s$





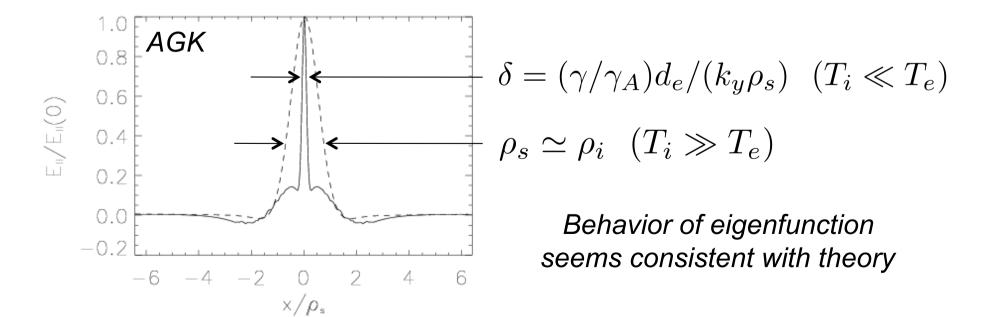
In fluid calculations, the *T_i* dependence comes from:

$$\nabla_{\perp} \cdot \frac{d}{dt} \nabla_{\perp} (\phi + p_{i\perp}) = \nabla_{\parallel} J$$

In kinetic calculations:

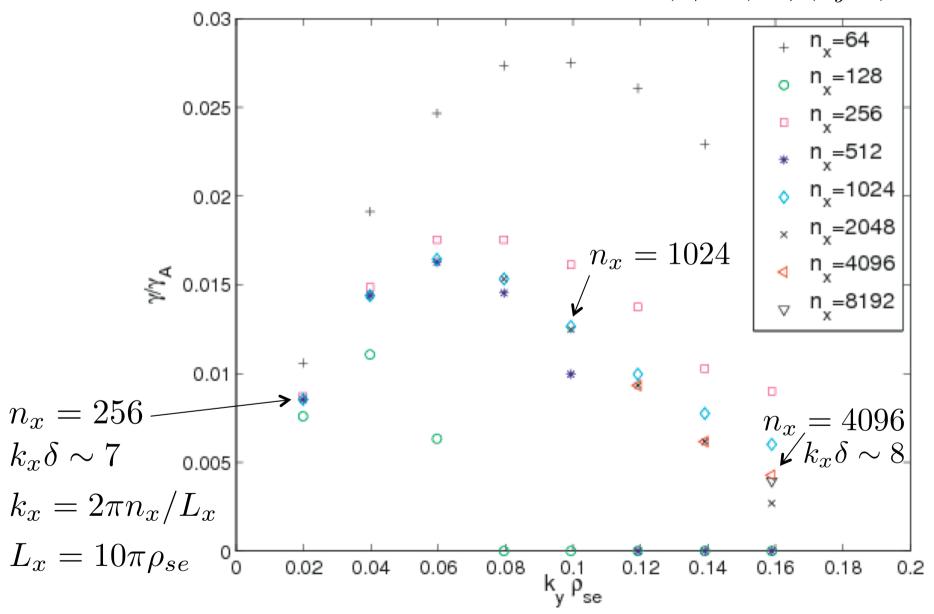
$$\tilde{n}_e = \overset{\Psi}{\tilde{n}_i}, \quad \tilde{n}_i = \frac{n_0 e}{T_i} \left[\Gamma_0(b) - 1 \right] \phi, \ b = -\rho_i^2 \nabla_\perp^2$$

In either case, same physics as: $\omega^2 = k_{\parallel}^2 V_A^2 (1 + k_\perp^2 \rho_s^2)$

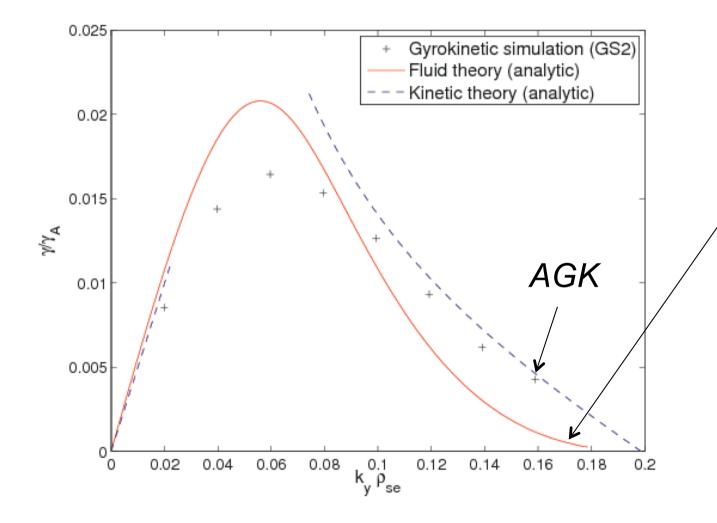


High resolution required for small Δ'

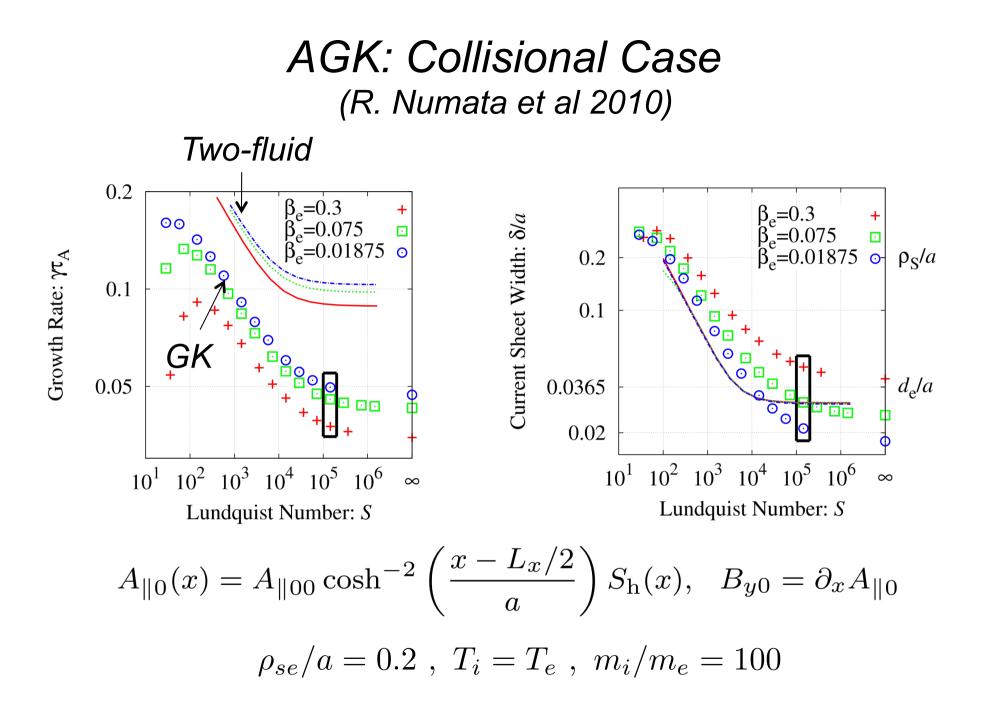
Collisionless electron scale length: $\delta = (\gamma/\gamma_A) d_e / (k_y \rho_s)$



Ongoing debate: is electron gyroviscous cancellation complete or partial?

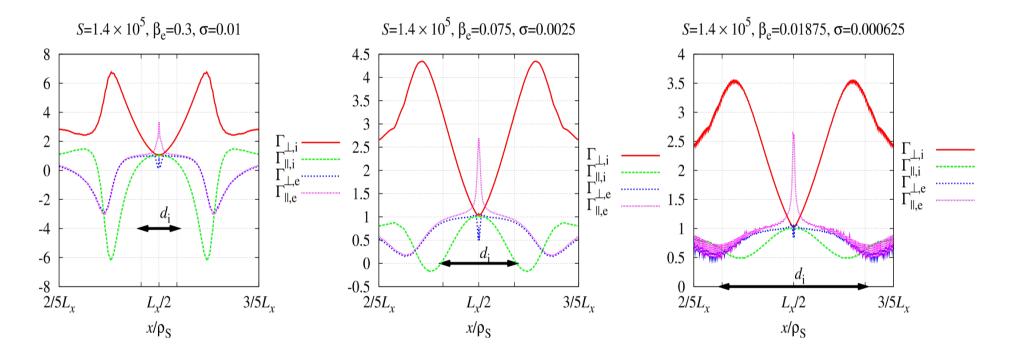


Including electron polarization drift, without electron gyroviscous / cancellation in two-fluid model



Relationship of p to n more complex than simple isothermal or adiabatic equation of state

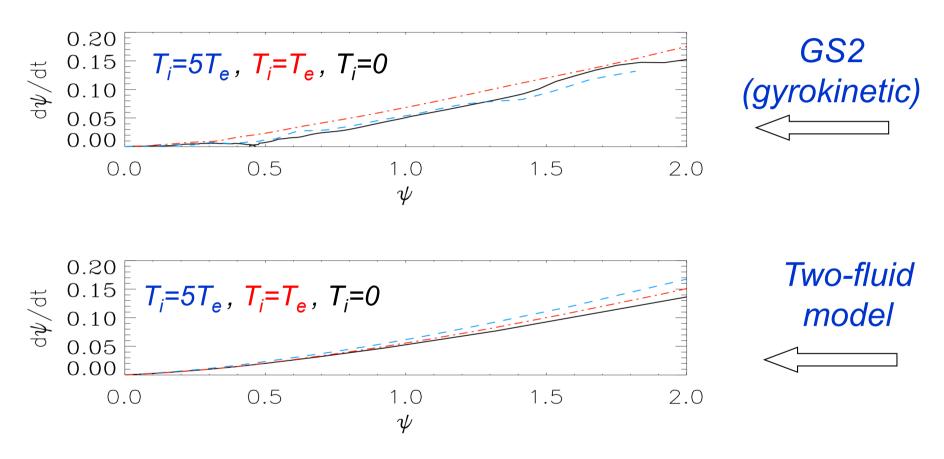
Polytropic Eqn. of State $p \propto (n_0 m)^{\Gamma}$ leads to $\tilde{p} = \Gamma T_0 \tilde{n}$ or $\tilde{T}/T_0 = (\Gamma - 1)\tilde{n}/n_0$



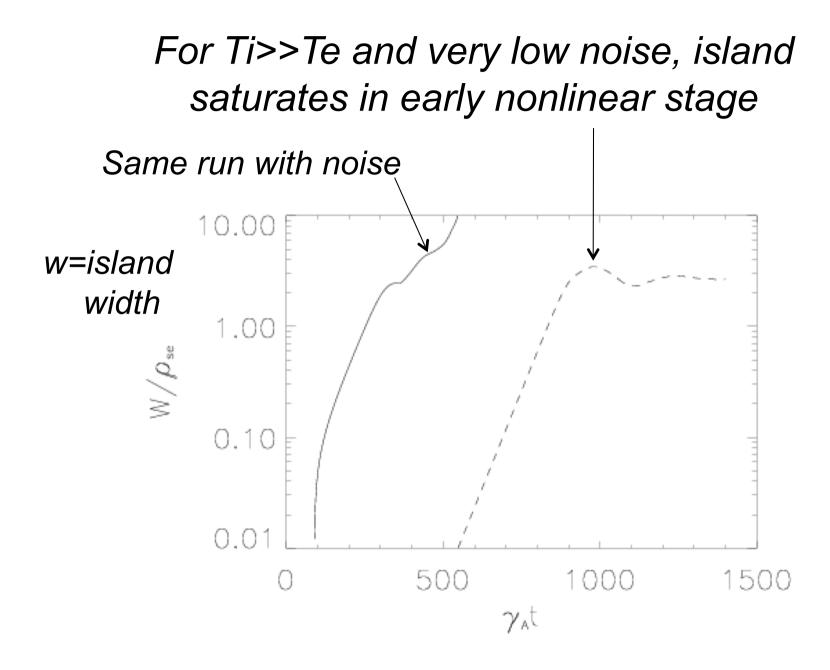
(AGK, R. Numata et al 2010)

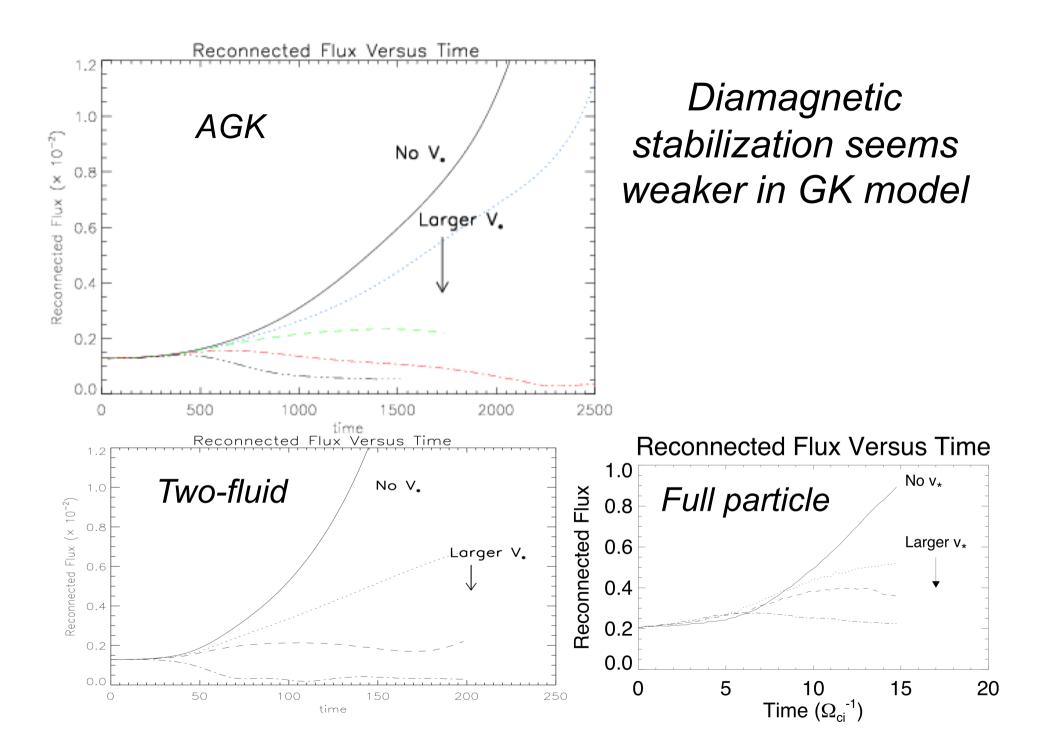
Nonlinear Phase

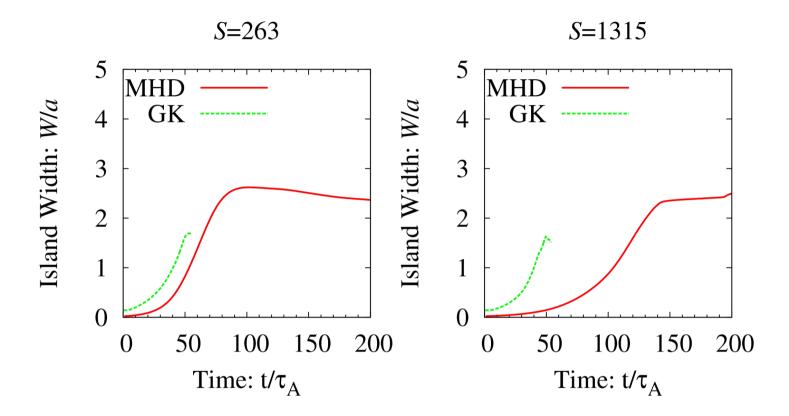
(Phys Plasmas, Sept 2007)



Nonlinear reconnection rates in simple large-Δ' system very similar to two-fluid model

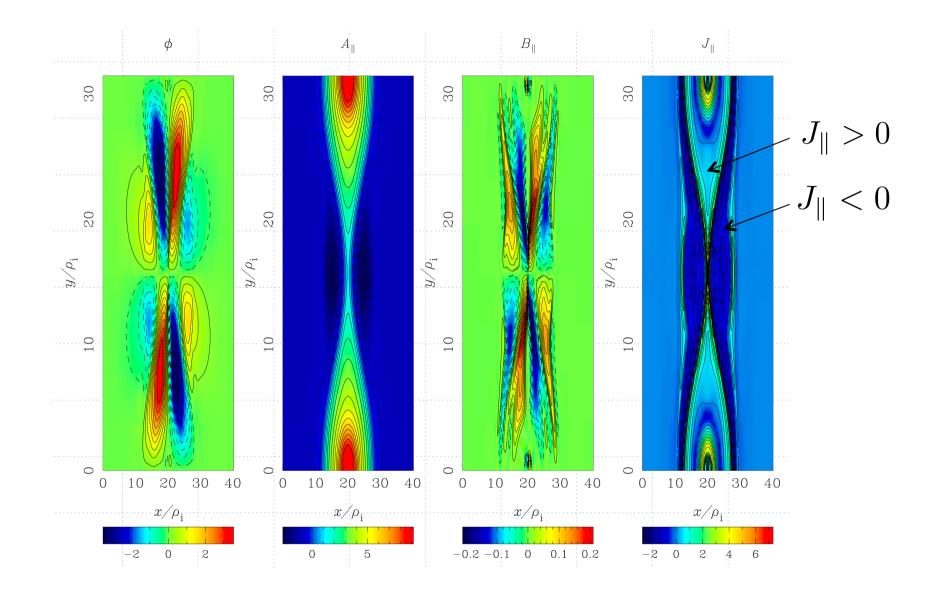






Smaller island saturation width in AGK

(R. Numata et al 2010)



(AGK, R. Numata et al 2010)

Summary

- GK codes have potential to explore kinetic reconnection physics in the strong guide field limit given some parameter restrictions
- But linear benchmarks still have some unresolved issues (Ti dependence, GENE vs AGK...)
- Nonlinear studies in progress
- Small $\underline{\Lambda}'$ regime may be very numerically challenging