Gyrokinetic Microtearing Studies

C M Roach

summarising work involving many collaborators:

D J Applegate⁰, JW Connor, S C Cowley, D Dickinson¹, W Dorland²,

R J Hastie, S Saarelma, A A Schekochihin³ and H R Wilson¹

Euratom/CCFE Fusion Association, Culham Science Centre, UK

⁰ SERCO

¹ University of York, UK

² University of Maryland, US

³ University of Oxford, UK

This work was funded by the United Kingdom Engineering and Physical Sciences Research Council and the European Communities under the contract of Association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Outline of the Talk

Summary of mostly old gyrokinetic simulations of microtearing modes in STs, using GS2.

- (1) Tearing Parity Modes and Simulation Literature
- (2) Microtearing Mode in MAST
- (3) Contact with Analytic Theory
- (4) Nonlinear Simulations
- (5) Key Questions

Eigen-Mode Parity along Equilibrium Magnetic Field is Even or Odd

Local ballooning space represents physical quantities as twisting slices:

$$F(x, y, \theta) = e^{ik_y(y+s(\theta-\theta_0)x)} \sum_{k=1}^{\infty} \hat{F}(\theta-\theta_0-2\pi p) e^{inq(x)2\pi p}$$

 $p = -\infty$

x is equ'm flux surface label, x=0 at q(x)=m/n y equ'm field line label, \perp to **b**, lying in the flux surface θ is II to **b**

slow II variation

 \hat{F} is defined on infinite domain in the ballooning angle η , θ_0 is the ballooning parameter.

$$\hat{F}(\eta) \rightarrow 0 \text{ as } \eta \rightarrow \pm \infty$$

fast | variation

 \hat{F} eigenfunctions are either even or odd in η , about η = θ_0

Tearing Parity Modes

At x=0, the parity of $\hat{F}(\eta)$ about $\eta = \theta_0$ in ballooning space determines the symmetry of F along the field line in real space

Perturbed magnetic field comes from $\delta \mathbf{B} = \nabla \times \delta \mathbf{A}$ \Rightarrow radial component: $\delta B_x = \partial A_{\parallel} / \partial y = i k_y A_{\parallel}$

A_{II} even, conclude for x=0 that

 $\Rightarrow \delta B_x \text{ same sign along equ'm field line}$ $\Rightarrow \delta B_x \text{ sinusoidal in y at fixed } \theta$

 \Rightarrow equilibrium field lines are torn!

Even A_{II} implies **tearing** of magnetic flux surface x=0

θω

Some Gyrokinetic Microtearing Mode Simulations in the Literature

Microtearing found in study high β and high performance plasmas:

M Kotschenreuther *et al*, Nuclear Fusion **40**, 677 (2000) GS2

Often dominant instabilities for $k_v \rho_i < 1$ at mid-radius in MAST plasmas:

- > D J Applegate *et al*, Phys Plasmas **11**, 5085 (2004)
- > C M Roach *et al*, PPCF **47**, B323 (2005)

Microtearing found to dominate ST Power Plant equilibrium:

➢ H R Wilson *et al*, Nuclear Fusion **44**, 917 (2004)
GS2

Detailed numerical study of microtearing, ST reference, includes scan in R/a:

D J Applegate *et al*, PPCF **49**, 1113 (2007) GS2

Nonlinear analytic theory of μ -tearing may explain electron transport in NSTX

➢ K L Wong *et al*, Phys. Rev. Lett. **99**, 135003 (2007)

Edge plasmas in ASDEX-Upgrade have μ-tearing modes ≻ D Told *et al*, Phys. Plasmas **15**, 102306 (2008)

GS2

Linear Microstability Analysis at Mid-Radius in MAST

See Applegate et al, Physics of Plasmas (2004)

Tearing Parity Modes at ρ_{i} scale

Fastest growing modes in STs often found to have tearing parity:

- MAST [1], and NSTX [2]
- conceptual burning STs [3,4]
- [1] Applegate *et al*, Phys Plasmas **11**, 5085, (2004).
- [2] Redi et al, EPS, St Petersburg (2003)
- [3] Kotschenreuther et al, Nuc Fus 40, 677 (2000),
- [4] H R Wilson et al, Nuclear Fusion, 44, 917 (2004)

MAST tearing parity modes rotate in electron diamagnetic drift direction

Visualising Micro-tearing Mode in Real Space

Poincaré plot shows perturbed magnetic field at intersection of GS2 flux-tube with the outboard mid-plane.

Magnetic island on rational surface at x=0.

Microtearing mode is candidate to explain electron transport

Two Major Questions:

What is the linear physics mechanism underlying these modes? How much anomalous transport is generated at nonlinear saturation?

Analytic Theories of Microtearing Instabilities

- ∇T_e microtearing drive discovered in cylinder
- Hazeltine Dobrott and Wang (1975): kinetic, collisions key, any ν_{e}/ω

Further slab calculations confirm $\nabla {\sf T}_e$ drive at high ν_e/ω

- Drake and Lee (1977), Gladd et al (1980): kinetic, Hassam (1980): fluid
- => collisional slab drive requires energy dependent $v_e(E)$

Kinetic calculations in toroidal geometry (large R/a), for low ν_{e}/ω

• Catto and Rosenbluth (1981), Connor, Cowley and Hastie (1990)

 \Rightarrow low collisionality drive from trapped particle collisions on passing particles also requires energy dependent $\nu_e(E)$

MAST has small R/a and $v_e/\omega \sim 0.5$ so analytic theories should be poor. Catto-Rosenbluth trapped particle drive mechanism, nevertheless, predicts growth with MAST parameters!Connor, Cowley, Hastie does not!

CM Roach *et al*, PPCF **47**, B323 (2005) **CCFE**

(CMR)

Analytic Theories of Microtearing Drives and Properties of the GS2 Modes

Two classes of linear drive in analytic theory literature:

- time dependent thermal force (high collisionality, υ_{ei} > ω)
- collisions close to the trapped-passing boundary ($\upsilon_{ei} < \omega$)

Both drives require

- finite dT_e/dr
- energy dependent collision frequency $v_{ei}(v)$

Some properties of the GS2 mode:

- > sensitive to electron physics v_e , ∇T_e and ∇n_e
- > sensitive to β , ∇p , s
- > **insensitive** to ion parameters v_i and ∇T_i and δB_{\parallel}
- > current layer width $\sim O(\rho_i)$

[1] DJ Applegate et al, PPCF 49, 1113 (2007) and PhD Imperial College (2006)

Experiment with Collision Operator

DJ Applegate et al, PPCF 49, 1113 (2007) and PhD Imperial College (2006)

GS2 Lorentz collision operator can capture boundary layers. Removed energy dependent collisions by setting $v_e(E)$ =constant

Modest affect on tearing γ

not consistent with analytic drive models!

Experiments Using s-α Model Equilibrium: Scan Aspect Ratio by varying R₀ at Fixed r

DJ Applegate et al, PPCF 49, 1113 (2007)

Fit MAST mid-radius surface with s- α model for fixed β , a/L_T, a/L_n, q, s Scan r/R₀ by varying R₀ and fixing r and other parameters, varies drifts + f_t

Experiments Using s-α Model Equilibrium: Scan R₀ at fixed r/R₀ to Vary Drifts

DJ Applegate et al, PPCF 49, 1113 (2007)

Now scan in R_0 at fixed r/ R_0 with other parameters constant

Experiments Using s-α Model Equilibrium: Scan in Trapped Particle Fraction, f_t

DJ Applegate et al, PPCF 49, 1113 (2007)

Now scan r/R_0 to vary f_t at fixed R_0 and other parameters

Overview of Most Interesting Findings

DJ Applegate *et al*, PPCF **49**, 1113 (2007)

Microtearing mode is driven by dT_e/dr as expected.

Mode is complicated and in awkward regime for analytic theory:

- > unstable over broad range of collisionality $0.05 < v_{ei}/\omega < 1.2$
- > current layer width ~ $O(\rho_i)$, so need ion FLR effects

Regimes where mode robust to energy independent collisions \Rightarrow puzzle

Mode not only unstable in ST

> unstable in large aspect ratio s- α model equilibria

Gyrokinetic microtearing also at r/R ~ 0.3 (~ MAST mid-radius) in conventional aspect ratio: D Told *et al*, Phys. Plasmas **15**, 102306 (2008)

* Very High β: Microstability in STPP

see H R Wilson et al, Nuc Fus 44, 917 (2004)

Conceptual Culham ST Power Plant (STPP), 1GW electrical, β =0.59 GS2 used for microstability analysis of mid-radius flux-surface, Ψ_n =0.35. Equilibrium features:

- striking variation in |B| around the magnetic flux surface
- magnetic drift reversal owing to high pressure gradient
- diamagnetic ω_{se} strongly peaked on outboard midplane

* Microstability Results for Mid-radius Surface in STPP

STPP surface Ψ_n =0.35

• no electrostatic instabilities, α stabilisation giving drift reversal

including EM gives tearing parity modes at ion and electron scales

* Microstability Results for Mid-radius Surface in STPP

STPP surface Ψ_n =0.35

- no electrostatic instabilities (α stabilisation from drift reversal)
- EM effects gives **tearing parity modes at ion and electron scales**, all propagating in electron drift direction
- Mixing length χ ~4m²s⁻¹ (no ω_{se})

Nonlinear Microtearing Simulations with GS2

D J Applegate

First nonlinear GK simulations with GS2 [1,2] :

• modified mid-radius MAST equilibrium for increased tractability

	MAST Equilibrium	Nonlinear Model	
q	1.3463	1.3463	reduces radial box size
\hat{s}	0.286	1.4 🚽	by factor 5
β	0.0495	0.12	
a/L_{n_e}	-0.1766	2.4	
a/L_{T_e}	2.0433	2.0433	
a/L_{P_e}	1.8667	4.4433	
a/L_{n_i}	-0.1766	2.4	
a/L_{T_i}	2.0433	2.0433	
a/L_{P_i}	1.8667	4.4433	

Few k_y modes: n_{ky} =4, n_{kx} =47, n_{θ} =32 n_{E} =8, n_{λ} ~20

- "pseudo-saturation" with low transport, blows up later at high k_x
- small timesteps imposed by the CFL condition

[1] D J Applegate PhD Thesis, Imperial College (2007).

[2] D J Applegate et al, 32nd EPS, Tarragona, ECA volume 29C, P5-101, 2005

Nonlinear Electron Heat Flux

D J Applegate

Poincaré Plot and $\delta \mathbf{j}_{\parallel}$ contours at $\theta=0$ D J Applegate

before spike event, t=532

A_{II} Spectra for nky=8 Simulation

Spikes most evident at high k, but are controlled by D

* Φ Spectra for nky=8 Simulation Spikes most evident at high k, but suppressed by D 10^{0}

Fidelity Issues

D J Applegate

Convergence?

• saturation sensitive to $Min(k_y)$, and we need to go lower in $k_y!$

what causes the high k spikes?

are we dissipating important physics?

Flux-Tube equilibrium?

- as reduce $Min(k_y \: \rho_i$), we go to low n
- $s^{SIM} = 5 s^{MAST}$ so L_x artificially small

 \bullet at lower k_{y} and s, flux-tube gets fatter, to challenge local approximations

More work needed!

Do Microtearing Modes Matter in MAST Anyway?

D Dickinson, York

Impact of FLOW SHEAR on microtearing modes?

- $\gamma_{\rm E} > \gamma_{\rm lin}$ so will they be suppressed?
- slab drive may make suppression more difficult
- almost done

Conclusions

Microtearing modes from GS2 simulations of MAST are complicated!

- ➤ trapped and passing particles contribute drive with dT_e/dr
- \succ insensitivity of γ to energy dependent collision frequency is puzzling
- \succ µtearing specific neither to ST geometry nor to GS2!
 - Inear benchmark?
 - > map out where μ tearing important

Limited comparisons with analytic theory so far.

> do better in easier limits?

Preliminary nonlinear simulations for MAST mid-radius are interesting, but:

- more work needed to test convergence
- > what is happening at high k?
- Iocal flux-tube equilibrium is challenged if n gets too small!
 - ➤ easier equilibria?
 - ➤ impact of FLOW SHEAR?

