The simulation effort for the basic plasma experiment TORPEX

Paolo Ricci, B. Rogers¹, and the TORPEX team

Centre de Recherches en Physique des Plasmas École Polytechnique Fédérale de Lausanne, Switzerland I) Dartmouth College, Hanover NH

Why TORPEX?

How its dynamics can be approached? What are the turbulent regimes? How do simulations and experiments compare? What are we really learning from TORPEX simulations?

Plasma turbulence in the edge

Need for basic plasma physics experiments

The TORPEX experiment, paradigm of edge turbulence

crpp.epfl.ch/torpex/

Fundamental elements of SOL turbulence

Fasoli et al., PoP 2006

Measurements of all relevant plasma and field parameters

Properties of TORPEX turbulence

Fluid model

 T_e, Ω (vorticity) \implies similar equations $V_{||e}, V_{||i} \implies$ parallel momentum balance $\nabla_{\perp}^2 \phi = \Omega$

Global simulations

Evolve both equilibrium and fluctuations

The character of TORPEX turbulence

Depends on N, the number of B turns

Low N: $k_{\parallel} = 0 \implies$ Ideal interchange dominated High N: $k_{\parallel} \neq 0 \implies$ Resistive interchange dominated

Another instability regime – driftwaves – to be discussed later (likely inaccessible to the experiments)

Ideal interchange mode

$$k_{\parallel} = 0 \implies$$

$$n + T_{e} \text{ eqs.} \longrightarrow \frac{\partial p_{e}}{\partial t} = \frac{c}{B} [\phi, p_{e}]$$
Vorticity eq. $\longrightarrow \frac{\partial \nabla_{\perp}^{2} \phi}{\partial t} = \frac{2B}{cm_{i}Rn} \frac{\partial p_{e}}{\partial y}$

$$\implies \gamma = \gamma_I \qquad \gamma_I = c_s \sqrt{\frac{2}{L_p R}}$$

Anatomy of a $k_{\parallel} = 0$ perturbation

 λ_v : longest possible vertical wavelength of a perturbation

If
$$k_{\parallel}=0$$
 then $\lambda_v=\Delta=~rac{L_v}{N}$

TORPEX shows $k_{\parallel} = 0$ turbulence at low N

Poli et al., PoP 2006, 2008

For N~1-6, ideal $(k_{\parallel} = 0)$ interchange modes dominant

Ideal interchange (N=2)

High N > 7

Simulations and TORPEX experiments dominated by $k_{\parallel} \neq 0$ toroidally symmetric turbulence.

Resistive interchange $k_{\parallel} \neq 0$ Why $\lambda = L_v$? N > 6?Toroidally symmetric?Explain in a moment.

Poli et al., PoP 2006, 2008

At high N>7, toroidal $\lambda_v \sim L_v$ symmetric turbulence

Resistive interchange (N=16)

Resistive interchange modes

Parameters of the resistive interchange mode

$$k_{\parallel} = \frac{\mathbf{k} \cdot \mathbf{B}}{B} = \frac{(k_v B_v + k_\varphi B_\varphi)}{B}$$

Define: $k_v = 2\pi l/L_v$, $k_{\varphi} = -n/R (= -2\pi n/(2\pi R))$:

$$k_{\parallel} = \frac{l}{RN} - \frac{n}{R}$$
 and $\frac{k_{\parallel}}{k_v} = \frac{L_v}{2\pi R} \left(\frac{1}{N} - \frac{n}{l}\right)$

Since the RI needs $k_{\parallel}^2/k_v^2 < \gamma_I \eta_{\parallel} c^2/(4\pi V_A^2)$

 \implies The most unstable mode is for $N \gg 1$ is n = 0, l = 1

In TORPEX the RI mode has $k_{\parallel} = 1/(RN)$, $k_v = 2\pi/L_v$ and requires $N^2 > V_A^2 L_v^2/(\gamma_I \eta_{\parallel} c^2 \pi R^2)$ Why does TORPEX transition from ideal to resistive interchange for large N?

Resistive interchange requires high N: $N^2 > V_A^2 L_v^2 / (\pi \gamma_I \eta_{\parallel} c^2 R^2).$ Ideal interchange requires low N: $\lambda_v = rac{L_v}{N}$ thus $k_v = rac{2\pi N}{L}$ stable: $k_v \rho_s > 0.3 R \gamma_I / c_s \sim 0.2 \sqrt{R/L_p}$ Transport less effective at high k

Threshold: N~10 TORPEX

Linear stability analysis: TORPEX

Ricci & Rogers, PRL 2010

Resistive Driftwaves

Neglecting the curvature terms, soundwaves, and m_e/m_i : $\nu_e k_y^2 \rho_s^2 \gamma^2 + k_{||}^2 c_s^2 (1 + 2.94 k_y^2 \rho_s^2) \gamma + i k_{||}^2 c_s^2 \omega_* = 0$ $(\nu_e = e^2 n \eta_{||}/m_i)$

Fastest mode:

$$\gamma_{dw} \simeq 0.1 c_s / L_p \quad \text{for} \quad k_\perp \rho_s \simeq 0.5, \quad k_\parallel \simeq 0.2 \sqrt{\nu_e / (c_s L_p)}$$

Define DW regime as:

DW need
$$\frac{L_p}{R} < 0.01$$

Linear stability analysis of TORPEX

Interchange transport prevents access to DW regime in TORPEX for realistic parameters (as in tokamak SOL)

Analysis of other devices: Helimak

Non-MHD drift-interchange mode

Braginskii equations with $\eta_{\parallel} = m_e = T_i = V_{\parallel i} = 0$:

$$\begin{split} \frac{\partial \nabla_{\perp}^2 \phi}{\partial t} &= \frac{2B}{cm_i Rn} \frac{\partial p_e}{\partial y} + \frac{4\pi V_A^2}{c^2} \frac{\partial j_{\parallel}}{\partial z} \quad (\text{where } p_e = nT_e) \\ \frac{\partial n}{\partial t} &= \frac{c}{B} \left[\phi, n\right] + \frac{2c}{eRB} \left(\frac{\partial p_e}{\partial y} - ne \frac{\partial \phi}{\partial y}\right) + \frac{1}{e} \frac{\partial j_{\parallel}}{\partial z} \\ \frac{\partial T_e}{\partial t} &= \frac{c}{B} \left[\phi, T_e\right] + \frac{4cT_e}{3eRB} \left(\frac{7}{2} \frac{\partial T_e}{\partial y} + \frac{T_e}{n} \frac{\partial n}{\partial y} - e \frac{\partial \phi}{\partial y}\right) + \frac{2T_e}{3ne} \frac{\partial j_{\parallel}}{\partial z} \\ - \frac{\partial \phi}{\partial z} + \frac{1}{ne} \frac{\partial p_e}{\partial z} = \eta_{\parallel} j_{\parallel} \simeq 0 \quad \rightarrow \quad \tilde{p}_e \simeq n_0 e \tilde{\phi} \quad (\text{adiabatic electrons}) \end{split}$$

These give $(\omega_{*n} = k_{\perp} \rho_s c_s / L_n, \omega_{*p} = k_{\perp} \rho_s c_s / L_p, \omega_d = k_{\perp} \rho_s c_s / R)$:

$$\left(1+\frac{5}{3}k_{\perp}^{2}\rho_{s}^{2}\right)\gamma^{2}-i\gamma\left(\omega_{*p}+\frac{10}{3}\omega_{d}k_{\perp}^{2}\rho_{s}^{2}\right)-\frac{10}{3}\omega_{d}(\omega_{*n}-2\omega_{d})=0$$

 $\gamma \sim \sqrt{\omega_d \omega_{*n}} \sim c_s / \sqrt{RL_n} \quad \text{for} \quad k_\perp \rho_s \sim 1$

What are we really learning from TORPEX simulations?

- How to characterize turbulence in a relatively simple system
- Need of global simulations

Flux tube simulations are not appropriate to describe a certain set of instabilities

• Need of non-local simulations

E.g., required by the saturation mechanism

• How to perform comparison between experiments and simulations

Need of global simulations

To describe instabilities like the resistive interchange mode

3D Flux tube simulations:

Ricci & Rogers, PoP 2009

30

20

10

2.5

2

1.5

Need of non-local simulations 40

Radial transport:

analytical estimate

Comparison of analytical and simulation results

Ricci & Rogers, PRL 2008, PoP 2009

How to make experiment/simulation comparison

- Comparison performed using observables across different hierarchy levels.
- A composite metric that takes into account the agreement of each observable is introduced.
- The "quality" of the comparison has to be defined.

Ricci et al., PoP 2009, and to be submitted

Concluding remarks

What are we learning from TORPEX modeling?

- By using global simulations and evolving both plasma equilibrium and fluctuations, it is possible to interpret the experimental results.
- The turbulence is subject to a number of driving mechanisms, as a competition between ideal interchange, drift waves, and resistive interchange.
- The properties of plasma turbulence reflect the different linear drives.
- Similar analysis can be carried out in other basic plasma devices.
- TORPEX is providing an ideal test-bed to study techniques and assumptions to be used for edge plasma turbulence simulations.

What's next?

SOL simulations

Some of the recent experimental results

Concluding remarks

What are we learning from TORPEX modeling?

- By using global simulations and evolving both plasma equilibrium and fluctuations, it is possible to interpret the experimental results.
- The turbulence is subject to a number of driving mechanisms, as a competition between ideal interchange, drift waves, and resistive interchange.
- The properties of plasma turbulence reflect the different linear drives.
- Similar analysis can be carried out in other basic plasma devices.
- TORPEX is providing an ideal test-bed for a close comparison between experiments and simulations, in plasma edge conditions.

What needs to be done...

Non-MHD drift-interchange mode

Braginskii equations with $\eta_{\parallel} = m_e = T_i = V_{\parallel i} = 0$:

$$\begin{split} \frac{\partial \nabla_{\perp}^2 \phi}{\partial t} &= \frac{2B}{cm_i Rn} \frac{\partial p_e}{\partial y} + \frac{4\pi V_A^2}{c^2} \frac{\partial j_{\parallel}}{\partial z} \quad (\text{where } p_e = nT_e) \\ \frac{\partial n}{\partial t} &= \frac{c}{B} \left[\phi, n \right] + \frac{2c}{eRB} \left(\frac{\partial p_e}{\partial y} - ne \frac{\partial \phi}{\partial y} \right) + \frac{1}{e} \frac{\partial j_{\parallel}}{\partial z} \\ \frac{\partial T_e}{\partial t} &= \frac{c}{B} \left[\phi, T_e \right] + \frac{4cT_e}{3eRB} \left(\frac{7}{2} \frac{\partial T_e}{\partial y} + \frac{T_e}{n} \frac{\partial n}{\partial y} - e \frac{\partial \phi}{\partial y} \right) + \frac{2T_e}{3ne} \frac{\partial j_{\parallel}}{\partial z} \\ - \frac{\partial \phi}{\partial z} + \frac{1}{ne} \frac{\partial p_e}{\partial z} = \eta_{\parallel} j_{\parallel} \simeq 0 \quad \rightarrow \quad \tilde{p}_e \simeq n_0 e \tilde{\phi} \quad (\text{adiabatic electrons}) \end{split}$$

These give $(\omega_{*n} = k_{\perp} \rho_s c_s / L_n, \omega_{*p} = k_{\perp} \rho_s c_s / L_p, \omega_d = k_{\perp} \rho_s c_s / R)$:

$$\left(1+\frac{5}{3}k_{\perp}^{2}\rho_{s}^{2}\right)\gamma^{2}-i\gamma\left(\omega_{*p}+\frac{10}{3}\omega_{d}k_{\perp}^{2}\rho_{s}^{2}\right)-\frac{10}{3}\omega_{d}(\omega_{*n}-2\omega_{d})=0$$

 $\gamma \sim \sqrt{\omega_d \omega_{*n}} \sim c_s / \sqrt{RL_n} \quad \text{for} \quad k_\perp \rho_s \sim 1$

Field-aligned computational grid

Outlook: methodology for comparison

Analysis of other devices: LAPD

Convection

Analysis of other devices: LAPD

Rogers & Ricci, PRL, in press

Outline

- The TORPEX experiment (why? what can it do?)
- The simulation approach
 - The model used? 2D and 3D
- The turbulent regimes?
 Low (L) and High (H) confinement regimes
 How do experimental and simulation result

compare?

Code Validation

