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Radial electric field in gyrokinetics

First, show requirements on accuracy of charge
density conservation for tokamaks

Intrinsic ambipolarity
Next, show what we know for slab gyrokinetics

Finally, brief discussion on the tokamak problem
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Intrinsic ambipolarity (1)

In axisymmetric systems, at kK, L ~ 1
(n,—ny, (or (J-Vy), ) = 0 for any radial electric field

Related to conservation of toroidal angular

momentum
5 : 1 0
9 (RnMv, £} = V'
a7 RV, E), oy VT

Possible to show that to relevant order

0
a<ni—ne>w =0
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Intrinsic ambipolarity (I1)

Consider equation for toroidal angular momentum

Ri [; (n,MV, )+V-(13i+13€):e(ni—ne)E+£JxB}
C

Vo

Using V( A) (VR),—¢(VR)=antisymmetic
R(IxB)-L=J-(RBxE)=3-vy
we obtain

2 (rn v, 2)r v [RE-G o 2,

= e(ni—ne)(Ri-E)+%J-Vw
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Intrinsic ambipolarity (11

Flux surface averaged toroidal angular momentum

Neglect <Ri-136-vw> <<<Ri-l3i-Vz//> because it
is off-diagonal g g
1 O

Finally, using %(e(ni —ne)>w == ™ V’<J-VW>W
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Intrinsic ambipolarity (1V)

Flux surface averaged toroidal angular momentum

%<e(ni —n, )>w B \i' %V’«CR@E)Q(’/L" ~ e )>w -

- “; aij V’{%<RniMVi -i>w ¥ ; 5(; V'(RG-B,-V 1//>W}

For n;,— n_, =0, conservation of toroidal angular
momentum

%<RniMVi .§>w __ ; aaw v’

<Ri'13i'v'//>w
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Intrinsic ambipolarity (V)

BUT for gyroBohm transport, D g = (p;/a)p; v;
0 - 0 0 0.\’ V. Rp,
2 (rn v, €), -2, 2 (v, - (2] L

ot y  Or a) v, a
Then need )
0 B (p |V Vi
E<e(ni —n, )>l/, - B ( - j v, en, Z

p

on, 2
Usual models have "y _ (&j n Yi
ot a a

(n;— n,, =0 to relevant order = intrinsic ambipolarity
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Bottom line

Axisymmetric devices are intrinsically ambipolar <
toroidal angular momentum is conserved

To recover conservation of toroidal angular
momentum, need to work hard on

0

P ni—ne>w

Working with quasineutrality is a BAD IDEA

Better to use conservation of angular momentum
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Electrostatic gyrokinetics in a slab
+ Z

n,(x,t),T; (x,t), B = Bz =const
V(xt)~fc / A A~

p ., f L

X

li L>>p, :I Y

I LR VRfGK+E6f =0 ox
ot OE T (RE, u,t)

i (Uub_EVW(bj Ve +—v” I >fe(r’Eo’zUo’t)

ot OE, !
n’ +nipzjdvﬁGK+Idvﬁp:jdvfe_ne #r. 1)

J
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Transport of y-momentum Iin a slab

Full Vlasov = momentum conservation

0 0
ot <n MVW >T - _a_x<7[ivxy >T
(...)r=ldt dx dy dz = coarse grain average

Atk L~1,nV, = c (8pl+en %j
Y eB\ ox 0x

Relation valid for both gyrokinetics and full Vlasov
Full Vlasov = momentum transport to (o;/L)3 p,

—_E% 3 3 1 apz M 0 [cop g Y:
(i) = <Ba J v fMts Y)>T 20, ot 20, ax<Bayj Ay y>>

T

Newton Institute, August 2010 10



Ordering for f; and ¢

First term in momentum transport

—< jd?’v fiM(v- )> ~ 6% p, >> gyroBohm
B oy .

\ AN J
Y Y

O.U. n.Mouv,

11

In reality, f; and ¢ are decorrelated to first order
Shown in of flux tube simulations

Need to obtain f; and ¢ to second order in o,
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Gyrokinetic variables
Py ®

Expansionin o, =—F/~—<<1
L Q

A

Potential fluctuations with k, p; ~ 1 small by J;

U2 U2
New variables R=r+...,E=—+...,u=—+...

Dubin et al. PoP 1983 2 2B

3
R=ub- SV ¥xb40©E%,) E=— ub-v, ¥+0 5%
B M L

with W = <¢> _ Z;IB (;il <52>_ 21§Qi <(VR5><B).VRC'I3>

(...) =average in a gyromotion
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Polarization density

Two cases considered
Case 1. polarization density to second order

fip :fip,1 T Jip2
Obtain fi =fA=fo+fu+ fot ... ) =dy+d+ + ...
Case 2: polarization density from variational principle
fip — fip,l

Obtain fGX = fll = fo+ f, + G, + ..., §2) = gy + ¢ + D,+...
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Time evolution of n.t% - n

e

Evolution of f“X in conservative form

GK
I v | R+ B4 . J:GK(R-VRwEﬁJ =0
Ot \ OFE \ 8EJ

J
Y Y

1=V #V

Using this expression and the drift kinetic electrons

0 . ¢k _ v [ GK| 1 . ‘@_ D S vash
a(ni —n,) = V{.dz{fi (R VRr+Ean fe(v”b BV¢ bﬂ}

In each time step, n,“* — n, is set equal to n;, by
choosing the electric field
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Calculation of electric field at kK, L ~ 1

Electric field in x direction at k, L ~ 1 obtained such
that (n“% - n_),=0

With steady state turbulence and at kK, L ~ 1

D o (0 0
<E (niGK -n, )>T = e; — (at <niniy>T +a_x<H>T —ij

Ot Ox ’
D ~
with 2 =% € (vgxb)-v
Dt ot B
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Case 1

Obtain f,6K = (o) #2)
UNPHYSICAL force but physical transport

3

_ 3 0° (1 0 /s e @<¢> _ <3 Pi
Fy = 2Mesz <Id v ayaﬂ& O <¢ >+<¢ >Ej> %L

_ i% 3 v.o)) = 1 Op,
0, 15.8)={ 5 28 Jaro fanty-9)) -5

With f;= fiCK+ £+ [ = fO+ fo1 + firo, $= #O
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Case 2

Obtain f,6K = f(1) 41
No force but UNPHYSICAL transport
F,=0

(M), 1o = <C a¢jd3vfM( )> __L 9y

.20, ot
LM 0 <c a¢jd3vﬁ(v-y)2>

ZQ ox \ B oy

T

With f;= %+ f,,1 = = f + fip1 =) =117 7T xy
Not obvious that we should recover this form of I1!
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Consequences

Employing the gyrokinetic quasineutrality gives the
wrong velocity profile

Non-physical terms comparable to gyroBohm
transport of momentum

Lower order gyrokinetic equation with ¥ = (¢#) gives
a stronger force F, ~ 67p;/L

Makes V;, ~ v;in a confinement time tg ~ ;2 L /v,

Need higher order drifts, in particular to order 53v;,
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Transport of momentum at long times

Possible to obtain expression for
<R§'ﬁ7i 'VW>T =O(§i3piRng‘)
with f; and ¢ only good to second order

Work in progress
Expressions are far more complicated!

Work in the slab and preliminary work in tokamaks
seems to indicate that drifts are needed to &3v,

Possible to reduce requirements for B, /B << 17?
Then neglect v, contributions, the difficult ones!
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