Gyrokinetic Simulations of Microtearing Instability

July 28, 2010

R. NUMATA^{A,†}, W. Dorland^A, N. F. Loureiro^B, B. N. Rogers^C, A. A. Schekochihin^D, T. Tatsuno^A

† rnumata@umd.edu

A) Center for Multiscale Plasma Dynamics, Univ. Maryland
B) Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear
C) Dept. Phys. & Astron., Dartmouth College
D) Rudolf Peierls Centre for Theor. Phys., Univ. Oxford

Microtearing Instability

- Tearing modes can be driven by electron temperature gradient with current density gradient [Hazeltine *et al.* (1975)].
- High k mode (Microtearing [MT]): unstable even normal tearing stable regime ($\Delta' < 0$).
- Collisional mode ($\nu_e/\omega_e^* > 1$) [Drake and Lee (1977)].
- Nonlinear theory by Drake *et al.* (1980) predicts saturation level of magnetic fluctuation $\tilde{B}/B_0 \sim \rho_{\rm e}/L_{T_{\rm e}}$.
- May account for anomalous electron transport in fusion experiments, but may not in (conventional) tokamaks because of weak collisionality.
- Trapped particle effect: Catto and Rosenbluth (1981), Conner (1990).
- Recent revival: MT may be relevant in Spherical Tokamaks (ST); Redi *et al.* (2003) NSTX, Applegate (2004) MAST.
- This study: simplified geom. using AstroGK, no curvature, no trapped particles.

Theory (Drake and Lee)

Drift-kinetic electron + Lorentz collision operator

TABLE II. Drift-tearing instability.

Classification of Drift-Tearing Mode

INI Cambridge Meeting, July 19 - August 13 (2010) - p.3/11

Simulation Setup

- AstroGK [Numata et al.: arXiv: 1004:0279 (2010)] is used. Full collision op.
- Electron and one ion species, both treated kinetically.
- Purely 2D: $k_z = 0$.
- Equilibrium (on top of f_{0s} and B_{z0}): Electron parallel flows $\delta f_{e0} \propto v_{\parallel} f_{0e}$ to generate B_{y0} :
 - cosh type (normalized to $|B_{y0}| \le 1; B'_{y0}(x=0) \sim 2.6$)

$$B_{y0} = B_{y00} \cosh^{-3} (x/a) \sinh (x/a)$$

Critical
$$k_{y,\text{crit}}a = \sqrt{5}$$
 for normal tearing

sin type

$$B_{y0} = \sin\left(x/a\right)$$

Critical $k_{y,crit}a = 1$ for normal tearing

•
$$\phi_0 = \delta B_{\parallel 0} = 0$$
, and $\delta f_{i0} = 0$

Simulation Parameters

- L_s : Magnetic shear length $\boldsymbol{B} = B_{z0}\hat{z} + x/L_s\hat{y}$ (used in the theory).
- a: Magnetic shear length at x = 0 in our simulation (see previous slide). $a = \epsilon L_s$, where $\epsilon = \rho_0/a_0$ is the gyrokinetic ordering parameter, ρ_0 and a_0 are the reference length scale in the perpendicular and parallel direction, respectively.
- Solution k_y : wavenumber of perturbation. If $k_y > k_{y,crit}$, the normal tearing mode is stable $\Delta' < 0$.
- $L_{n_{0e}} \equiv -\partial(\ln n_{0e})/\partial x$, and $L_{T_{0e}} \equiv -\partial(\ln T_{0e})/\partial x$ (or $\eta_e \equiv L_{T_{0e}}/L_{n_{0e}}$): Density and temperature gradients define the drift frequency $\omega_{n,T}^* = k_y U_{n,T}^d$ with the drift velocity $U_n^d = -T_0/(qB_0L_{n_0}), U_T^d = -T_0/(qB_0L_{T_0}).$ (Note: rigorously speaking the gradients must satisfy $\sum_s n_{0s}T_{0s}(L_{n_{0s}}^{-1} + L_{T_{0s}}^{-1}) = 0$)

$$= m_{\rm e}/m_{\rm i} = 0.01, T_{\rm 0i}/T_{\rm 0e} = 1, n_{\rm 0i}/n_{\rm 0e} = 0, q_{\rm i}/q_{\rm e} = -1.$$

$$\beta_{\rm tot} = 2\beta_{\rm e} = 0.01.$$

Comparison with Theory

FIG. 1. Growth rate as a function of collisionality for different values of temperature gradient. Other relevant dimensionless parameters are $k_y \rho_i = 0.05$, $\beta = 0.01$, $L_{\mu}/L_s = 0.05$, $m_i/m_e = 1836$, and $T_e/T_i = 1$. All further calculations will have the same values of m_i/m_e and T_e/T_i .

• Unstable if
$$\nu_{\rm e}/\omega_{\rm e}^* \gtrsim 1$$
 (where $\omega_{\rm e}^* = \omega_{{\rm e},n}^*$).

Larger a/ρ_i is destabilizing. Note that parameter a/ρ_i is missing in the theory.

Comparison with Normal Tearing

- Slower than normal tearing mode (stabilization by drift).
- Broad spectrum (destabilization by drift).

Peculiar Behavior

- Growth rate jumps up at later stage for cosh type equilibrium.
- Probably because of existence of current sheet with longer shear length at x = 0.

Eigenfunctions (cosh **type eq.)**

Eigenfunctions (sin **type eq.)**

Summary

- We have successfully demonstrated linear microtearing instability using AstroGK.
- One missing parameter a/ρ_i prevents direct comparison of simulation results with the theory. But, we have confirmed qualitative behavior is consistent with the theory.
- Large a/ρ_i enhances microtearing growth.
- Peculiar two-phase growth for cosh type equilibrium profile. This may be because two current sheet with different shear length.
- More detailed analysis are needed. Convergence test must also be performed.

Acknowledged: CPMD, Leverhulme Trust Network, Wolfgang Pauli Inst., NERSC, NCCS, TeraGrid.

